期刊文献+

使用遗传算法改进的两阶段云任务调度算法研究 被引量:11

Improved Two Period Cloud Task Scheduling Algorithm with Genetic Algorithm
下载PDF
导出
摘要 为了解决传统整数规划方法在云资源调度问题上收敛速度慢,难以适应大规模云端任务调度优化的缺陷,基于遗传算法提出了初始任务配置算法和动态任务配置算法,分别用于解决云端任务初始提交阶段和任务动态运行阶段的资源调度优化问题.在两阶段任务调度优化过程中,分别结合截止时间和资源利用率确定了有针对性的优先级队列,分别使用滑动窗口机制和在线迁移机制提升任务调度性能.通过对迭代过程和收敛速度的实验分析,本文算法能够利用遗传算法的优势解决两阶段云任务调度优化问题,并具有更快的收敛速度. To solve the low convergence speed and shortage by traditional integer planning method on large scale task scheduling, initial task configuration algorithm and dynamic task configuration algorithm was proposed based on genetic algorithm. And cloud resource scheduling problem with initialized accepted period and dynamic running period for tasks could be solved with the two algo- rithms. During the two periods, priority queues were constructed with deadlines and resource ratios respectively. At the same time, slide window mechanism and online migration mechanism were used to improve scheduling efficiency. By analyzing the iterated procession and convergence speed with experiments, cloud resource scheduling with two periods can be solved with higher convergence speed.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第6期1305-1310,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(71503260)资助 陕西省自然科学基金项目(2014JM8345)资助
关键词 遗传算法 资源调度 云计算 滑动窗口 genetic algorithm resource scheduling cloud computation slide window
  • 相关文献

参考文献1

二级参考文献36

  • 1Ghodsi M Z A, Hindman B A, Konwinski, et al. Dominant resource fairness: Fair allocation of multiple resource types [C] //Proc of FAST'll. Berkeley, CA: USENIX Association, 2011 : 1-14. 被引量:1
  • 2Wei W, Baochun L, Ben L. Dominant resource fairness in cloud computing systems with heterogeneous servers [C]//Proc of the 33rd IEEE INFOCOM. Piscataway, NJ: IEEE 2014:583-591. 被引量:1
  • 3Xiao Z, Song W, Chen Q. Dynamic resource allocation using virtual machines for cloud computing environment [J]. IEEE Trans on Parallel and Distributed Systems, 2013, 24 (6) : 1107-1117. 被引量:1
  • 4Jinhai W, Chuanhe H, Kai H, et ai. An energy-aware resource allocation heuristics for VM scheduling in cloud [C] //Proe of the 10th IEEE Int Conf on High Performance Computing and Communications & 2013 IEEE Int Conf on Embedded and Ubiquitous Computing(HPCC_EUC). Berlin: Springer, 2013:587-594. 被引量:1
  • 5Fei X, Fangming L, Hal J, et al. Managing performance overhead of virtual machines in cloud computing: A survey, state of the art, and future directions[J]. Proceedings of the IEEE, 2014, 102(1): 11-31. 被引量:1
  • 6Sheng D, Wang C L. Dynamic optimization of muhiattribute resource allocation in self-organizing clouds [J]. IEEE Trans on Parallel and Distributed Systems, 2013, 24(3): 464-478. 被引量:1
  • 7Baruah S K, Gehrke J E, Plaxton C G. Fast scheduling of periodic tasks on multiple resources [C] //Proc of the 9th Int Parallel Processing Syrup. Piscataway, NJ: IEEE, 1995~ 280-288. 被引量:1
  • 8Mo J H, Walrand J. Fair end-to-end window-based congestion control [J].IEEE/ACM Trans on Networking, 2000, 8(5)~ 556-567. 被引量:1
  • 9Blanquer J M, Ozden B. Fair queuing for aggregated multiple links [C] //Proc of ACM SIGCOMM Computer Communication Review. New York: ACM, 2001~ 189-197. 被引量:1
  • 10Liu Y, Knightly E. Opportunistic fair scheduling over multiple wireless channels [C] //Proc of the 22nd Annual Joint Conf on the IEEE Computer and Communications Societies. Piscataway, NJ ~ IEEE, 2003 : 1106-1115. 被引量:1

共引文献27

同被引文献71

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部