摘要
近年来,高精度的位移测量精度要求越来越高,为响应这一需求,本文依据待测位移量可由反射光强变化得出的原理设计了一种基于塑料光纤的位移传感器。本文所涉及的光纤位移传感器以静态拉伸式杨氏模量测量实验中钢丝长度的微小变化为待测量进行设计。在整个传感器系统制作完成后,结果显示,在0~3mm的位移范围内,测量输出与实际位移成线性关系且线性度为0.6%,在较大位移区间内实现了具有良好线性度的测量,同时,根据实验结果测得灵敏度为2.13m V/μm,保证了测量的精准度。这种设计方法的使用扩大了塑料光纤的应用领域,同时,优化了传感器的精准度和线性化精度等性能指标。,
In recent years, the high precision displacement measurement precision demand is higher and higher, in response to this demand, based on displacement under test can be reached by the reflected light intensity change principle to design a kind of based on plastic optical fiber displacement sensor. Optical fiber displacement sensor to involved in this paper the static tensile young's modulus measuring small changes in the length of the wire in the experiments to measure to carry on the design. Throughout the sensor system production is completed, the experimental results show that the sensor output within the range 0 ~ 3 mm and a linear relationship with the displacement, the sensitivity of 2.13 m V/mu m, linearity is 0.6%, so in larger measuring range is realized with good linear. This kind of design greatly enlarged the scope of the use of plastic optical fiber, and the sensor precision is improved greatly by, and the need for linearization accuracy into consideration?
出处
《电子测试》
2017年第5期45-46,39,共3页
Electronic Test
关键词
微位移测量
塑料光纤
光纤位移传感器
Micro-displacement measurement
Plastic optical fiber
Optical fiber displacement sensor