摘要
钠硼硅酸盐玻璃作为高放射废物玻璃固化体的候选材料之一,已有大量实验对该类玻璃开展了电子或重离子的辐照效应研究.然而,在理论计算与模拟方面的工作却很少,目前主要集中于重离子的辐照效应,对电子的辐照效应的模拟尚未见报道.本文利用分子动力学工具提出一种新的方法,以实现对电子辐照诱导的玻璃结构演化进行模拟.该方法基于实验中玻璃的结构变化特点,即实验中的拉曼结果已经证实:在大剂量的电子辐照后的玻璃中存在分子氧的事实,由于这些分子氧不会与其他粒子发生相互作用,因而可以通过从体系中逐步地移除一定数量氧原子的方式,以达到模拟大剂量电子辐照的情形,进而得到电子辐照后的玻璃的结构信息.模拟结果显示:随着移除氧原子的数量增加,玻璃中的Si—O—Si平均键角逐渐减小;而且玻璃中的小环数量会因氧的逐渐减少而逐渐增加;玻璃中部分[BO4]结构会转变为[BO3]结构,最终这种转变会达到饱和;大量移除氧之后,玻璃中的钠元素也出现明显的相分离.这些模拟辐照的玻璃结构特性能较好地与实验中的硼硅酸盐玻璃电子辐照诱导的结构变化符合.因此,本文提出的方法有望为通过分子动力学模拟硼硅酸盐玻璃的电子辐照效应提供新思路.
Sodium borosilicate (NBS) glass is one of the candidate materials for high-level waste glass immobilization. A large number of experiments are performed to study the effect of irradiation by electrons or heavy ions on this type of glass. However, only a few researches of numerically investigating the effect of irradiated NBS glass have been reported. Furthermore those studies mainly focus on heavy-ion irradiation, and none of them is devoted to simulating the effects of electron irradiation on glass that has been irradiated by electrons, especially for structure evolution. In this paper, we propose a novel method of using molecular dynamics (MD) to simulate structure evolution of electron-irradiated NBS glass with compositions of 67.73% SiO2, 18.04% B2O3 and 14.23% Na2O, in mol.%. This method is based on the previous experimental results of Raman spectra and mechanism of structure transformation in irradiated glass. The Raman spectra confirm that the peak indicating the existence of molecular oxygen appears at 1550 cm-1 in irradiated glass. It is assumed that those oxygen atoms do not have any interactions with other adjacent atoms nor participate in the glass network recombination. This assumption is reasonable, for molecular oxygen mainly exists as dissolved oxygen instead of oxygen bubble and is located at interstice of glass network. Thus the presence of molecular oxygen does not have any effect on glass network structure. Then irradiated glass can be obtained by gradually randomly removing a certain number of oxygen atoms from the pristine glass. The glass with removed oxygen atoms is regarded as an irradiated glass which is considered as one irradiated by electrons in experiments. The results derived from MD simulation include average Si—O—Si bond angle, ring size distribution, sodium profile, evolution of [BO4] units, and [BO3] units. With the increase of removed oxygen atoms, the average bond angle of Si—O—Si decreases and the number of small rings gradually increases in irradiated glass.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2017年第10期235-242,共8页
Acta Physica Sinica
基金
国家自然科学基金(批准号:11505085,11505084)
中央高校基本科研业务费专项资金(批准号:lzujbky-2015-68,lzujbky-2016-37)资助的课题~~
关键词
硼硅酸盐玻璃
分子动力学
电子辐照
结构演化
borosilicate glass, molecular dynamics, electron irradiation, structure evolution