摘要
风电机组的状态监测和故障诊断依赖于对其关键状态参数的参考值进行有效预测。文章采用基于系统模型的非线性状态评估方法对风电机组关键的状态参数进行预测。通过对风电机组进行建模仿真,构建扩展卡尔曼滤波和无迹卡尔曼滤波模型预测风电机组主轴转速和发电机电磁转矩,对比两种方法的预测结果在不同测量步长下的差异。结果显示,无迹卡尔曼滤波方法比扩展卡尔曼滤波方法具有更强的收敛性和稳定性,受测量步长影响更小。
Wind turbine condition monitoring and fault diagnosis are realizable based on prediction of key parameters of the wind turbine.The model-based nonlinear state estimation method is utilized to predict key parameters of the wind turbine in the paper.A wind turbine model is established for simulation.An extended Kalman filter (EKF) and an unscented Kalman filter (UKF) are presented to estimate the rotor speed and generator torque of a wind turbine.The comparison results of the prediction in different measurement step show that the UKF method has better convergence and stability and is less affected by the measurement step,compared with the EKF method.
作者
曹梦楠
邱颖宁
冯延晖
王浩
Cao Mengnan Qiu Yingning Feng Yanhui Wang Hao(School of energy and power engineering, Nanjing University of Science and Technology, Nanjing 210094, China)
出处
《可再生能源》
CAS
北大核心
2017年第5期753-758,共6页
Renewable Energy Resources
基金
国家自然科学基金青年项目(51505225)
中央高校基本科研业务费专项资金资助(30915011324)
江苏省六大人才高峰项目(ZBZZ-045)
江苏省自然科学基金面上项目(BK20131350)
关键词
风力发电
非线性状态估计
扩展卡尔曼滤波
无迹卡尔曼滤波
wind power generation
nonlinear state estimation
extended Kalman filter
unscented Kalman filter