期刊文献+

火箭冲压发动机燃气发生器燃气流量控制设计 被引量:3

The Gas Flow Control Designing of Rocket Ramjet Gas Generator
下载PDF
导出
摘要 冲压发动机的燃气流量调节可以使冲压发动机工作在设计空燃比附近,从而使冲压发动机高效、安全工作,压强响应时间和负调量是燃气发生器进行流量调节控制器设计的关键参数,而这两个参数受喉部面积变化速度的影响较大,且很难通过实验获得上述关系,为了研究喉部面积变化速度与压强响应时间及负调量之间的关系,建立了燃气发生器喉部面积变化速度和负调量与压强响应时间之间关系的数学模型,并进行了matlab仿真,选取了其中一个喉部面积变化速度进行了燃气发生器点火实验。仿真结果表明,喉部面积变化速度低于临界速度时,参数响应时间较大,且随着喉部面积变化速度的变化,参数响应时间变化较大,喉部面积变化速度高于临界速度时,参数响应时间较小且受喉部面积变化速度的影响较小,喉部面积变化速度对燃气流量的负调量也有较大的影响;点火实验验证了所建立的数学模型。进行压强反馈控制器设计时,要选取合适的喉部面积变化速度,为发生器流量控制优化设计提供了科学依据。 The mathematical model and the simulation model of gas regulating system are established according to mathematical model with MATLAB/Simulink, so that the relationship between the throat area change rate and the pressure response time can be studied. In order to verify the simulation results, the hot experiments of gas regulating system are conducted. The simulation results indicate that when the throat area change rate is below the critical veloc- ity, the response time parameter is large, and with the changes of throat area change rate, the response time parame- ters changes quickly. When the throat area change rate is above the critical velocity, the response time parameter is small, and with the changes of throat area change rate, the response time parameters changes slowly. The results of the hot experiment meet the simulation results. Therefore, when designing the pressure feedback control system, it should be considered comprehensively to choose the optimal throat area change rate.
出处 《计算机仿真》 北大核心 2017年第5期49-52,67,共5页 Computer Simulation
关键词 燃气发生器 压强响应时间 喉部面积变化速度 数学模型 仿真 实验 Gas generator Response time Throat change rate Mathematic model Simulation Experiments
  • 相关文献

参考文献5

二级参考文献39

  • 1闫联生,李贺军,崔红,王涛,邓海涛,李广武.固体冲压发动机燃气阀用C/SiC复合材料研究[J].固体火箭技术,2006,29(2):135-138. 被引量:6
  • 2盛德林.丛林狼超声速掠海飞行靶弹[J].飞航导弹,2006(12):2-5. 被引量:7
  • 3Miller W H, Burkes WM JR, Mcclendon S E. Design approaches for variable flow ducted rocket [ R]. AIAA-81-1489, 1981. 被引量:1
  • 4Wilkerson F S, Lucas J T. Variable flow solid propellant gas generator for missile control systems [ R ]. AIAA-81-1464, 1981. 被引量:1
  • 5Sosounov V. Research and development of ramjets/ramrockets ( part 1 ) : Integral solid propellantramrockets [ R ]. AGARD -94 -2929 I, 1994. 被引量:1
  • 6Wilson R, Limage C, Hewitt P. The evolution of ramjet missile propulsion in the US and where we are headed [ R ]. AIAA-96-3148,1996. 被引量:1
  • 7Ronald S F. A century of ramjet propulsion technology evolution [ J ]. Journal of Propulsion and Power, 2004,20 ( 1 ) : 27- 58. 被引量:1
  • 8Sreenatha A G, Bhardwaj N. Mach number controller for a flight vehicle with ramjet propulsion [ R ]. AIAA-99-2941, 1999. 被引量:1
  • 9Ferrard S. Long-range air-to-air missile meteor -far and fast with a ramjet[J]. Planet Aerospace,2002, (7) :36-37. 被引量:1
  • 10Ronald S Fry. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power, 2004, 20( 1 ) : 27-58. 被引量:1

共引文献36

同被引文献21

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部