期刊文献+

基于候选区域选择及深度网络模型的骑车人识别 被引量:2

Cyclist detection based on detection proposals and deep convolutional neural networks
原文传递
导出
摘要 基于骑车人目标识别的骑车人保护系统是保护道路环境中骑车人的重要手段。该文提出了骑车人目标的候选区域选择方法,并结合基于深度卷积神经网络的目标分类与定位方法,实现了骑车人目标的有效识别。候选区域选择方法可分为3部分:骑车人共有显著性区域检测、基于冗余策略的候选区域生成和基于车载视觉几何约束的候选区域选择。在公开的骑车人数据库上进行的对比试验表明:相对于现有的目标候选区域选择及目标识别方法,该方法显著提升了骑车人目标的识别率及识别精度,进而验证了该方法的有效性。 Cyclist protection systems based on cyclist detection methods are needed to protect cyclists from road traffic. This paper presents a detection proposal method and a cyclist detection method using deep convolutional neural networks to classify and locate cyclists. The detection proposal method uses cyclist shared salient region detection, redundancy-based detection and geometric constraint based detection. Tests using a public cyclist dataset show that this method significantly outperforms state-of-the art detection proposals, which verifies the effectiveness of this method.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第5期491-496,共6页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(51605245) 戴姆勒-清华大学联合项目
关键词 目标识别 骑车人识别 目标候选区域选择 卷积神经网络 object detection cyclist detection detection proposal convolutional neural network
  • 相关文献

参考文献1

二级参考文献8

  • 1郑林,韩崇昭,左东广,王永昌.基于多特征融合的运动目标识别[J].系统仿真学报,2004,16(5):1081-1084. 被引量:10
  • 2边肇祺,张学工.模式识别[M].第2版.北京:清华大学出版社,2004. 被引量:1
  • 3Satoshi Yasutomi, Hideo Mori. A Method for Discriminating of Pedestrian Based on Rhythm[ C]//Intelligent Robots and Systems ‘94. ' Advanced Robotic Systems and the Real World, IROS '94. Proceedings of the IEEE/RSJ/GI International Conference on Volume 2,12 - 16 Sept, 1994, Page(s) : 988 - 995. 被引量:1
  • 4Pai Chiajung, Tyan Hsiaorong, Liang Yuming, et al. Pedestrian Detection and Tracking at Crossroads[J]. Pattern Recognition, 2004,37 : 1025 - 1034. 被引量:1
  • 5Dukesherer John, H Smith, Chrstopher E. A Hybrid Hough-Hausdorff Method for Recognizing Bicycles in Natural Scenes [J]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2001, 4:2493 - 2498. 被引量:1
  • 6Heikkila J, Silven O. A Real-Time System for Monitoring of Cyclists and Pedestrians[J]. Image and Vision Computing, 2004, 22 (7): 563- 570. 被引量:1
  • 7Wohler C, Anlauf J K. Real-Time Object Recognition on Image Sequences with the Adaptable Time Delay Neural Network Algorithm-Applications for Autonomous Vehicles [J]. Image and Vision Computing, 2001,19(9 - 10) : 593-618. 被引量:1
  • 8Zhao L, Thorpe C E. Stereo and Neural Network-Based Pedestrian Detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(3) : 148- 54. 被引量:1

共引文献10

同被引文献3

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部