摘要
水下滑翔机是一种不依靠外部推进装置的水下自主航行器,它通过改变净浮力和浮心位置进行运动,因此要求其具有优良的水动力性能。本文介绍实验室所研制的水下滑翔机的外形设计,对水下滑翔机斜航运动与定常回转运动水动力进行数值计算,并实施拖曳试验,其计算结果与试验结果吻合较好。同时,在湖泊试验中水下滑翔机相继完成了多组锯齿运动和螺旋下潜运动,进一步验证水动力计算结果的准确性,满足工程应用的要求,其结果对水下滑翔机的设计具有一定的指导和借鉴意义。
Underwater gliders are a class of autonomous underwater vehicles which don't use external active propulsion systems. By changing its net buoyancy and the center of buoyancy, it can glide in sawtooth motion and spiraling motion. Therefore, a good hydrodynamic performance is extremely important to design a glider. The configuration of an underwater glider designed by our laboratory was described in this paper. The hydrodynamics of the glider in linear and turning motion were calculated by CFD software. The calculated results are in good agreement with the towing experimental results. Fur- thermore, the glider completed a series of sawtooth motions and spiraling motions in the lake experiment. It indicates that the hydrodynamic results are accuracy and satisfy the engineering requirement. The results provide guidance and reference for the design of an underwater glider.
出处
《舰船科学技术》
北大核心
2017年第3期107-112,共6页
Ship Science and Technology
基金
国家自然科学基金资助项目(51279107
41527901)
上海市科委项目基金资助项目(13dz1204600)
关键词
水下滑翔机
水动力系数
拖曳试验
underwater glider
hydrodynamic coefficient
towing experiment