期刊文献+

平滑滤波联合VS-LMS在拉曼光谱去噪中的应用 被引量:2

The application of smoothing filter combined with VS-LMS in the denoising of Raman spectroscopy
下载PDF
导出
摘要 拉曼光谱的提取中,信号会受到多种背景噪声的干扰,使得拉曼光谱的有效信息被噪声削弱甚至淹没,因此在光谱分析和处理中光谱去噪是非常重要的一个环节。针对拉曼光谱的噪声特性,提出平滑滤波联合VS-LMS的去噪算法。平滑滤波虽然能够较好去除的拉曼光谱中的噪声,但在光谱的细节和波峰波谷部分仍有噪声残留,再使用VS-LMS对整体进行二次去噪,更好的还原光谱的细节部分。仿真结果表明,平滑滤波联合VS-LMS相比于传统的去噪算法,信噪比、均方根误差和相关系数均得到显著的提高。 In the extraction of Raman spectroscopy, the interference signal will be a variety of background noise, which makes the effective information of Raman spectra weakened or even submerged in noise. So the spectral donois- ing is very important in its analysis and processing. In view of the noise characteristic of the Raman spectrum, the de- noising algorithm of smoothing filter combined with VS-LMS is proposed. Although the noise smoothing filter can effec- tively remove the noise in Raman spectra, the spectrum still has residual noise in the details and the peaks and val- leys. Then, do the second denoising by VS-LMS to better restore the spectral details. The simulation results show that compared with the traditional denoising algorithm, the signal to noise ratio, root mean square error and correlation co- efficient are significantly improved.
出处 《激光杂志》 北大核心 2017年第5期145-149,共5页 Laser Journal
基金 国家自然科学基金项目(11264038) 新疆维吾尔自治区高技术研究发展项目计划资助(201412107)
关键词 拉曼光谱 去噪 LMS自适应滤波器 平滑滤波联合VS-LMS算法 raman spectroscopy de-noising least mean suqare adaptive filter smoothing filter conbined with VS-LMS algorithm
  • 相关文献

参考文献7

二级参考文献40

  • 1陈鹏,侯朝焕,马晓川,梁亦慧.LFM信号基于自适应预白化处理的GLRT检测器[J].系统工程与电子技术,2006,28(8):1138-1140. 被引量:5
  • 2YIN Hong,CHEN Zeng-qiang,YUAN Zhu-zhi.Robust digital watermarking algorithm based on continuous hyperchaotic system and discrete wavelet transform[J].Optoelectronics Letters,2006,2(5):369-372. 被引量:2
  • 3陈晨,徐大海,程庆华.基于小波变换的拉曼光谱去噪处理[J].长江大学学报(自科版)(上旬),2006,3(4):31-33. 被引量:5
  • 4COHEN Leon. Time-frequency analysis: theory and appli- cation [M]. [S. l.] : Prentice Hall, 1995. 被引量:1
  • 5HUANG N E, SHEN Z, LONG S R. The empirical mode decomposition and Hilbert spectrum for nonlinear and non- stationary time series analysis [J]. Proc. Roy. Soe. , 1998, 454(17) : 903-905. 被引量:1
  • 6PENG.Z K, TSE P W, CHU E L. An improved Hilbert- Huang transform and its application in vibtation signal analysis [J]. Jounal of Sound and Vibration, 2005, 286(9) : 187-205. 被引量:1
  • 7HUANG N E, SHEN Z, LONG S R. A new view of non- linear water waves[J]. The Hilbert Spectrum. Annu. Rev. Fluid Mech., 1999, 31(20): 417-457. 被引量:1
  • 8WU Z, HUANG N E. Ensemble empirical mode decompo- sition: a noise assisted data analysis method[R]. Calverton: Center for Ocean-Land-Atmosphere Studies, 2005. 被引量:1
  • 9WU Z, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proc. R. Soc. , 2002, 460(21): 261-266. 被引量:1
  • 10Zhu J, He D, Bechhoefer E. Survey of lubrication oil condition monitoring, diagnostics, and prognostics techniques and systems [J]. Journal of Chemical Science and Technology, 2013, 2 (3) :100-115. 被引量:1

共引文献63

同被引文献19

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部