期刊文献+

多级优化的云计算任务智能调度算法 被引量:9

Intelligent Task Scheduling Algorithm of Cloud Computing Using Multi-level Optimization
下载PDF
导出
摘要 在云计算环境中用户数量巨大,需要处理的任务繁多,高效的任务调度算法是云计算需要解决的关键问题之一。针对云计算的模型结构,引入粒子群算法和蚁群算法联合优化任务调度算法。首先使用粒子群算法生成初始调度结果,并引入随机性的惯性权重提高算法的调节能力,将改进粒子群算法生成的结果作为蚁群算法的初始信息素寻找最优调度方案,并使用遗传算法中的精英策略和交叉算子改进蚁群算法,在算法中使用多层次优化算法提高算法运行效率。实验结果表明,在相同的条件下,改进后的算法任务总完成时间得到降低,且随着任务量的增加性能优势更为明显。 The user number and tasks need to be handled are huge in the cloud computing environment, so the high-efficient task scheduling algorithm is one of the key issues to be resolved. The particle swarm optimization and ant colony algorithm are introduced into the task scheduling according to the structure of the cloud computing model. Firstly, the particle swarm algorithm is used to generate the initial scheduling results and the random inertia weight is used to improve its regulation ability. The result is used as the initial pheromone of the ant colony algorithm to search the optimal scheduling scheme, in which the elitist strategy and crossover operators from the genetic algorithm are used to improve the ant colony algorithm to enhance the efficiency. The experiment results show that the total task completion time of the improved algorithm is less than that of the prior algorithm, and the performance becomes more obvious as the task size increases.
出处 《控制工程》 CSCD 北大核心 2017年第5期1008-1012,共5页 Control Engineering of China
基金 湖南省自然科学基金(14JJ2124) 湖南省教育厅科学研究项目(14C0792)
关键词 云计算 任务调度 改进的蚁群算法 改进的粒子群算法 任务完成总时间 Cloud computing task scheduling improved ant colony algorithm (ACA) improved particle swarm optimization (PSO) task completion time
  • 相关文献

参考文献4

二级参考文献53

  • 1李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 2Bui V, Norris B, Huck K, et al. A component infra- structure for performance and power modeling of par- allel scientific applications[C]//Proc of CBHPC' 08. Karlsruhe, Germany:[s. n. ], 2008. 被引量:1
  • 3Khan S, Ahmad I. A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids [J]. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(3) :346-360. 被引量:1
  • 4Guzek M, Pecero J, Dorrosoro B, et al. A cellular ge- netic algorithm for scheduling applications and energy- aware communication optimization [C]// International Conference on High Performance Computing and Sim- ulation (HPCS). France: IEEE, 2010: 241-248. 被引量:1
  • 5GAN Guo-ning, HUANG Ting-lei, GAO Shuai. Ge- netic simulated annealing algorithm for task scheduling based on cloud computing environment [C]// Interna- tional Conference on Intelligent Computing and Inte- grated Systems (ICISS), Guilin, China: IEEE, 2010: 60-63. 被引量:1
  • 6Kolodziej J, Khan S, Xhafa F. Genetic algorithms for energy-aware scheduling in computational grids[C]//2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Barcelona, Catalonia, Spain: IEEE, 2011:17-24. 被引量:1
  • 7Wikipedia. Cloud computing [ EB/OL ]. [ 2012 - 05 - 21 ]. http:// de. wikiped ia. org,/ wiki/Cloud_Computing. 被引量:1
  • 8Arfeen M A, Pawlikowski K, Willig A. A Framework for Resource Al- location Strategies in Cloud Computing Environment [ J ]. Computer Software and Applications Conference Workshops (COMPSACW), 2011 IEEE 35th AnnuM,2011:261 - 266. 被引量:1
  • 9Zhao Chenhong, Zhang Shanshan, Liu Qingfeng, et al. Independent Tasks Scheduling Based on Genetic Algorithm in Cloud Computing[ C ] //Proc IEEE 5th International Conference on Wireless Communica- tions, Networking and Mobile Computing WiCom'09, Beijing,2009:1 -4. 被引量:1
  • 10Guo Lizheng, Zhao Shuguang, Shen Shigen, et al. Task Scheduling Op- timization in Cloud Computing Based on Heuristic Algorithm [ J ]. Jour- nal of Networks. 2012,7 ( 3 ) : 547 - 553. 被引量:1

共引文献67

同被引文献109

引证文献9

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部