期刊文献+

供热方向及催化剂涂层厚度对微反应器中CH_4-H_2O重整反应的影响分析 被引量:1

Effect Analysis of Heating Direction and Catalyst Coating Thickness on CH_4-H_2O Reforming in Microreactors
下载PDF
导出
摘要 通过构建包含有动量、能量和质量传递以及甲烷水蒸气重整反应动力学方程的多物理场耦合数值模型,分析了催化剂壁面涂覆式微反应器CH_4-H_2O重整反应过程中逆流和顺流两种供热方式对反应通道中的温度场、浓度场以及CH_4转化率的影响,并计算了不同涂层厚度条件下的CH_4转化率及反应通道压降。结果表明,逆流供热方式下重整反应可以得到更高的CH_4转化率,但催化剂层的温度波动也比顺流供热更为明显。增大催化剂层厚度会提高CH_4的转化率,但同样会使反应通道的压降增大,然而,反应通道压降的增加值相对于重整的反应压力而言可忽略不计。此外,涂层厚度的增加还会造成催化剂层更为剧烈的温度变化。综合以上结论,从催化剂层均温性的角度考虑,涂覆式CH_4-H_2O重整微反应器对于供热方向和涂层厚度的选择需要在CH_4转化率和反应器的均温性之间做出平衡。 A multi-physics-coupled numerical model, which contains the momentum, energy, mass transfer, as well as the chemical kinetic equations of CH4-H2O reforming in wall-coated microreactor has been carried out and analyzed in this paper. The effects of both counter-current flow and co-current flow of heat channel on the temperature and concentration distribution, as well as the CH4 conversion rate have been analyzed in detail; moreover, the CH4 conversion rate and pressure drop in reaction channel at different catalyst coating thicknesses were also calculated. It was found that a higher CH4 conversion rate can be obtained from the counter-current flow method for the reforming process; however, the temperature fluctuation in catalyst layer is also more significant. The conversion rate of CH4 increases with the increase of catalyst layer thickness, but an increase of pressure drop in the reaction channel also occurs. Compared with the reaction pressure, the increased pressure drop value is negligible. Furthermore, a more pronounced temperature fluctuation was also observed with higher catalyst layer thickness. In conclusion, the design of heating direction and catalyst layer thickness should be based on the careful trade-off between the CH4 conversion rate and temperature uniformity in catalyst layer for the wall-coated CH4-H2O microreactor.
作者 曹军 张莉 徐宏 CAO Jun ZHANG Li XU Hong(School of Mechanical and Power Engineering ,East China University of Science and Technology, Shanghai 200221, China)
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2017年第3期489-496,共8页 Acta Petrolei Sinica(Petroleum Processing Section)
基金 中央高校基本科研业务费探索基金项目(WG1414044) 中央高校基本科研业务费重点科研基地青年教师专项基金(WG1617011)资助
关键词 涂覆式微反应器 CH4-H2O重整 供热方向 涂层厚度 数值分析 wall-coated microreactor CH4-H2O reforming heating direction catalyst layer thickness numerical analysis
  • 相关文献

参考文献4

二级参考文献102

  • 1郑亚锋,赵阳,辛峰.微反应器研究及展望[J].化工进展,2004,23(5):461-467. 被引量:57
  • 2李希,陈建峰,陈甘棠.微观混和研究的现状[J].化学反应工程与工艺,1994,10(2):103-112. 被引量:11
  • 3赵玉潮,应盈,陈光文,袁权.T形微混合器内的混合特性[J].化工学报,2006,57(8):1884-1890. 被引量:31
  • 4张成芳.合成氨工艺与节能[M].上海:华东化工学院出版社.1990,24-32. 被引量:2
  • 5陈光文.微化工技术研究进展[J].现代化工,2007,27(10):8-13. 被引量:52
  • 6Irani Mohammad, Alizadehdakhel Asghar, Pour Ali Nakhaei, et al. CFD modeling of hydrogen production using steam reforming of methane in monolith reactors:Surface or volume-base reaction model?[J]. International Journal of Hydrogen Energy, 2011, 24(36):15602-15610. 被引量:1
  • 7Ghouse Jaffer H, Adams Thomas A Ⅱ. A multi-scale dynamic two-dimensional heterogeneous model for catalytic steam methane reforming reactors[J]. International Journal of Hydrogen Energy, 2013, 38:9984-9999. 被引量:1
  • 8Wang Feng, Zhou Jing, Wang Guoqiang. Transport characteristic study of methane steam reforming coupling methane catalytic combustion for hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37:13013-13021. 被引量:1
  • 9Wang Feng, Qi Bo, Wang Guoqing, et al. Methane steam reforming:Kinetics and modeling over coating catalyst in micro-channel reactor[J]. International Journal of Hydrogen Energy, 2013, 38:5693-5704. 被引量:1
  • 10Arzamendi G, Dieguez P M, Montes M, et al. Methane steam reforming in a microchannel reactor for GTL intensification:A computational fluid dynamics simulation study[J]. Chemical Engineering Journal, 2009, 154:168-173. 被引量:1

共引文献123

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部