摘要
为了有效地获取可比语料,选取汉柬双语新闻文档作为可比语料库的候选语料,提出一种融合发布时间要素、实体要素和主题分布的可比语料获取方法.该方法首先计算文本的主题概率分布的JS距离,并融合各主题和要素特征,计算文本相似度;然后利用改进型的层次聚类算法对双语文本进行聚类,最后从聚簇类结果中获取可比语料.与基于词典的文本相似度计算方法进行聚类相比,该文方法有更高的Purity和F值并且获得的高质量的可比语料更多,说明了本文方法的有效性.
In order to effectively obtain comparable corpus,this paper presents a method based on the inte- gration of time distribution, entity feature and topic distribution to obtain comparable corpus, selecting Chinese- Khmer bilingual news documents as the candidate corpus.The method first calculates the JS distance with the top- ic probability distribution of the text, and combines the theme and element features to calculate the text similari- ty;Then, the improved hierarchical clustering algorithm is used to cluster the bilingual texts;Finally, we can get comparable corpus from each cluster.Compared with text similarity computation method based on the dictionary, the proposed method has higher Purity and F values, and obtains more higher quality comparable corpus by this method.
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第3期360-368,共9页
Journal of Yunnan University(Natural Sciences Edition)
基金
国家自然科学基金(61462055
61562049
61363044)
关键词
可比语料库
层次聚类
双语主题模型
跨语言文本相似度
comparable corpus
hierarchical clustering
bilingual latent dirichlet allocation
cross- text similarity language