期刊文献+

基于自适应种群粒子群的光伏全局MPPT研究 被引量:11

Global MPPT Study of PV System Based on APPSO
下载PDF
导出
摘要 局部遮蔽条件(PSC)下,传统最大功率点跟踪(MPPT)算法会陷入局部极值,智能算法追踪时间过长。针对上述问题,提出了一种基于自适应种群粒子群算法(APPSO)的MPPT控制方法,引入全局和局部粒子密度的概念,并设计了两种自适应调整的粒子种群数量的机制。对该方法与常规粒子群算法(PSO)在均匀光照和PSC下分别进行了对比。仿真和实验结果均表明,在PSC下APPSO可迅速、准确地追踪到全局最大功率点(GMPP),追踪时间仅为PSO的50%左右。 Under partial shading conditions ( PSC ), conventional maximum power point tracking (MPPT) methods would get trapped in local extreme and intelligent algorithms are time-consuming.To solve these problems, an adaptive population particle swarm optimization(APPSO) is proposed.The algorithm introduces the concepts of the global and local firefly density during each iteration, and devises two elimination mechanisms to adaptively adjust the population number.The proposed method is compared with original particle swarm optimization(PSO) under normal irradiance condition and PSC.Simulation and experimental results demonstrate that the APPSO can immediately and accurately track the global maximum power point (GMPP) under PSC, and the tracking time is only about haft of PSO.
作者 石季英 凌乐陶 薛飞 李雅静 SHI Ji-ying LING Le-tao XUE Fei LI Ya-jing(Tianjin University, Tianjin 300072, China)
出处 《电力电子技术》 CSCD 北大核心 2017年第5期27-30,共4页 Power Electronics
基金 国际科技合作专项项目资助(2013DFA11040) 国家自然科学基金资助项目(61571324)
关键词 最大功率点追踪 粒子群算法 遮蔽情况 maximum power point tracking particle swarm optimization partial shading condition
  • 相关文献

参考文献1

二级参考文献17

  • 1Patel H, Agarwal V. MATLAB-based modeling to study the effects of partial shading on PV array characteristics [J]. IEEE Transaction on Energy Conversion, 2008,23(1): 302-310. 被引量:1
  • 2Miyatake M, Inada T, Hiratsuka I, et al. Control characteristics of a Fibonacci-search-based maximum power point tracker when a photovoltaic array is partially shaded[C]//The4thIPEMC. Riga, Latvia: IEEE, 2004: 816-821. 被引量:1
  • 3Ramaprabha R, Mathur B, Ravi A, et al. Modified Fibonacci search based MPPT scheme for SPVA under partial shaded conditions[C]//3rd International Conference on Emerging Trends in Engineering and Technology. Ooa, India: IEEE, 2010: 379-384. 被引量:1
  • 4Patel H, Agarwal V. Maximum power point tracking scheme for PV systems operating under partially shaded conditions[J] IEEE Transactions on Industrial Electronics, 2008, 55(4): 1689-1698. 被引量:1
  • 5Miyatake M, Toriumi F, Endo T, et al. A novel maximum power point tracker controlling several converters connected to photovoltaic arrays with particle swarm optimization technique[C]//European Conference on Power Electronics and Applications. Aalborg, Denmark: IEEE, 2007: 1-10. 被引量:1
  • 6Miyatake M, Veerachary M, Toriumi F. Maximum power point tracking of multiple photovoltaic arrays: a PSO approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 367-380. 被引量:1
  • 7Ishaque K, Salam Z, Taheri H, et al. Maximum power point tracking for PV system under partial shading condition via particle swarm optimization[C]//Applied Power Electronics Colloquium (IAPEC). Johor Bahru, Malaysia: IEEE, 2011: 5-9. 被引量:1
  • 8Kobayashi K. A study on a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions[J]. Electrical Engineering in Japan (S0424-7760), 2003(4): 2612-2617. 被引量:1
  • 9Kobayashi K, Takano I, Sawada Y. A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions [J]. Solar Energy Material & Solar Cells, 2006(90): 2975-2988. 被引量:1
  • 10Kennedy J, Eberhart R. Particle swarm optimization [C]//Proceedings of IEEE Conference on Neural Networks . Perth , Australia : IEEE Computational Intelligence Society, 1995: 1942-1948. 被引量:1

共引文献187

同被引文献84

引证文献11

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部