期刊文献+

Preparation and Application of Electrochemical Barbital Sensor Based on Molecularly Imprinting Technique 被引量:1

Preparation and Application of Electrochemical Barbital Sensor Based on Molecularly Imprinting Technique
原文传递
导出
摘要 A molecularly imprinted electrochemical sensor was prepared based on poly folic acid(PFA) for rapid detection of barbital(BAR). The PFA membrane was obtained via directly electropolymerization technique on the surface of chemically modified Au electrode(Au/CME) by means of cyclic voltammetry(CV) in the potential range between-0.4 and 1.0 V in phosphate buffer solution(PBS) pH 7.04. The molecularly imprinted polymers(MIP) membrane was synthesized with BAR as template molecules and folic acid(FA) as the functional monomer. The performance and surface feature of the proposed imprinted sensor were investigated using CV, differential pulse voltammetry(DPV), electrochemical impedance spectroscopy(EIS) and scanning electron microscope(SEM). Under the optimized conditions, the peak current decrease(ΔIp) was proportional to the BAR concentration in the range of 1.00×10^-7-1.00×10^-4 mol/L(R^2=0.998 2) with a detection limit(S/N=3) of 4.65×10^-8 mol/L. The results indicated that the imprinted sensor exhibited an excellent selectivity for BAR and it was successfully used to determine BAR in real samples with recoveries of 94.7%-106.2% by using the standard addition method. A molecularly imprinted electrochemical sensor was prepared based on poly folic acid(PFA) for rapid detection of barbital(BAR). The PFA membrane was obtained via directly electropolymerization technique on the surface of chemically modified Au electrode(Au/CME) by means of cyclic voltammetry(CV) in the potential range between-0.4 and 1.0 V in phosphate buffer solution(PBS) pH 7.04. The molecularly imprinted polymers(MIP) membrane was synthesized with BAR as template molecules and folic acid(FA) as the functional monomer. The performance and surface feature of the proposed imprinted sensor were investigated using CV, differential pulse voltammetry(DPV), electrochemical impedance spectroscopy(EIS) and scanning electron microscope(SEM). Under the optimized conditions, the peak current decrease(ΔIp) was proportional to the BAR concentration in the range of 1.00×10^-7-1.00×10^-4 mol/L(R^2=0.998 2) with a detection limit(S/N=3) of 4.65×10^-8 mol/L. The results indicated that the imprinted sensor exhibited an excellent selectivity for BAR and it was successfully used to determine BAR in real samples with recoveries of 94.7%-106.2% by using the standard addition method.
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第3期207-214,共8页 武汉大学学报(自然科学英文版)
基金 Supported by the Natural Science Foundation of Shanxi Province(20001057)
关键词 electrochemical sensors poly folic acid barbital molecularly imprinted polymer electrochemical sensors poly folic acid barbital molecularly imprinted polymer
  • 相关文献

参考文献4

二级参考文献34

共引文献32

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部