期刊文献+

基于位置的社交网络商户数据语义分析 被引量:1

SEMANTIC ANALYSIS OF BUSINESS DATA IN LOCATION-BASED SOCIAL NETWORK
下载PDF
导出
摘要 近年来,"移动"和"社交"成为了推动互联网发展的两项关键技术。在这两项技术的共同推动下,基于位置的社交网络LBSN得到了快速发展,在全球范围内吸引了海量的用户,不论是学术界还是工业界都在大力投入对LBSN的研究。LBSN网站都是以位置为中心的,也就是说任何用户原创内容,例如签到或评论,都必须与一个具体位置相关联。尽管位置信息在LBSN中扮演着重要的角色,但是目前国内外针对LBSN的研究基本上都是从用户角度出发的,缺少从位置角度的研究。同时,目前对LBSN中用户原创内容的分析缺少对文本信息的分析,在对目前中国最大的在线点评类社交网络——大众点评上的商家评论内容进行了大规模的数据采集,并针对获取的大量用户评论文本开展了语义分析。 In recent years, "mobile" and "social" to promote the development of the Internet has become the two keytechnologies. Under these two technologies, location-based social network (LBSN) have developed rapidly, attracting a large number of users on a global scale, both academia and industry are investing heavily in LBSN research. LBSN sites are location-centric , meaning that any user-generated content, such as sign-in or comment, must be associated with a specific location. Although location information plays an important role in LBSN, the research on LBSN at home andabroad is mainly from the user point of view, the lack of research from the perspective of location. At the same time, the analysis of original user content in LBSN is lack of analysis of text information. The author makes a large-scale data collection on the content of the business comment on the popular online commentary social network-Dianping, and carries out semantic analysis on the large amount of user comment text.Keywords Location-based social network Position angle User-generated content Sentiment analysis
出处 《计算机应用与软件》 2017年第5期79-85,共7页 Computer Applications and Software
基金 上海市自然科学基金项目(16ZR1402200)
关键词 基于位置的社交网络 位置角度 用户原创内容 语义分析 Location-based social network Position angle User-generated content Sentiment analysis
  • 相关文献

参考文献3

二级参考文献48

  • 1Vieweg S, Hughes A L, Starbird K L. Mieroblogging during two natural hazards events: What twitter may contribute to situa- tional awareness[C]//Proceeding of CHI. 2010:1079-1088. 被引量:1
  • 2Java A, Song X, Finin T. Why we twitter: Understanding mi- croblogging usage and communities[C]//Proceeding of WebK- DD/SN AKDD. 2007. 被引量:1
  • 3Kwak H,Lee C,Park H,et al. What is Twitter,a social network or a news media[C]//Proceeding of WWW. 2010. 被引量:1
  • 4Bernardo A H, Daniel M, Romero, et al. Social networks that matter: Twitter under the mieroscope [ J ]. First Monday, 2009, 14(1). 被引量:1
  • 5Baekstrom L, Sun E, Marlow C. Find me if you can: improving geographical prediction with social and spatial proximity[C]// WWW. 2010:61-70. 被引量:1
  • 6Cheng Z,Caverlee J, Lee K. You are where you tweet: a content- based approach to geo-locating twitter users[M]. ACM CIKM, 2010 : 759-768. 被引量:1
  • 7Lindqvist J, Cranshaw J, Wiese J, et al. I ' m the mayor of my house: examining why people use foursquare-a social-driven lo- cation sharing applieation[M]. ACM CHI, 2011 : 2409-2418. 被引量:1
  • 8Kostakos V, Venkatanathan J, Reynolds B. Who's Your Best Friend-Targeted Privacy Attacks In Location-sharing Social Networks[C]// Proceedings of UbiComp' 11. Beijing, China: ACM Press,September 2011:177-186. 被引量:1
  • 9Zhiyuan C,James C,Kyumin L, et al. Exploring Millions of foot- prints in location Sharing Serviees[C] // ICWSM. 2011. 被引量:1
  • 10Gonzalez M C, Hidalgo C A, Barabasi A L. Understanding indi- vidual human mobility pattems[J]. Proceedings of ACL, 2008, 453(7196) :779-782. 被引量:1

共引文献35

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部