摘要
当前,抑制强电磁场真空击穿的方法主要是结构改进和工艺处理,对于提高材料耐电子轰击性能来抑制击穿的研究相对较少。文章主要结合Monte-Carlo方法和Bethe能量损失规律,研究了兆电子伏级能量的电子垂直入射金属靶材的能量损失规律。研究表明,材料原子序数和原子密度越小,电子在材料中的有效射程越长,单位体积内沉积的平均能量越低,从而越有利于材料耐受电子束轰击。在此基础上,通过试验比较了铜、不锈钢和钛三种材料耐电子束轰击的性能,在相同的电子束能量下,铜由于密度最高而最容易受到电子束轰击破坏,密度最低的钛材料具有最好的耐电子束轰击性能。进一步的高功率微波(High Power Microwave)试验证实,相对于不锈钢材料,在2.8GW输出微波功率水平下,使用耐电子轰击性能更优的钛材料能够将输出微波脉宽由18ns增加到27ns,由强电磁场真空击穿引起的脉冲缩短明显得到有效抑制。
Presently,structure optimization and technological treatment are two main ways to depress the strong electromagnetic field breakdown.The energy deposition about 1MeV electrons in metal materials was investigated by Bethe energy loss law and Monte-Carlo simulation.The results indicate that the electrons in the material of smaller atomic number and density have much longer effective range and lower energy deposition density.Thereby, the material is more resistant to electrons bombardment and the breakdown risk can be effectively reduced.With the same incident electron energy,the copper,stainless steel and titanium were experimentally compared.Owing to its high density,the copper is destroyed most easily.Simultaneously,the titanium shows good performance for its low density.The further high power microwave (HPM) experiments show that,with ~2.8 GW output,the output microwave pulse width of the RBWO can be increased to 27 ns from 18 ns when the stainless steel is substituted by the titanium and the pulse shortening is effectively depressed.
作者
伍成
孙钧
陈昌华
霍少飞
张余川
曹亦兵
谢佳玲
WU Cheng SUN Jun CHEN Changhua HUO Shaofei ZHANG Yuchuan CAO Yibing XIE Jialing(School of Material Science and Engineering, Xiangtan University, Xiangtan 411105, China 2. Northwest Institute of Nuclear Technology, Xi'an 710024, China Science and Technology on High Power Microwave Laboratory, Xi'an 710024, China)
出处
《中国空间科学技术》
EI
CSCD
北大核心
2017年第2期11-16,共6页
Chinese Space Science and Technology
基金
国家自然科学基金(61401367)
西北核技术研究所预研项目(13061601)
关键词
击穿
能量沉积
有效射程
Monte-Carlo
电子轰击
材料
相对论返波管
Monte-Carlo
breakdown
energy deposition
effective range
Monte-Carlo
electrons bombardment
materials
relativistic backward wave oscillator