期刊文献+

扩张矩阵的一些性质

Some properties of expansive matrix
下载PDF
导出
摘要 研究了相关于扩张矩阵A的扩张球和拟范数的一些性质.首先通过具体实例及欧氏范数关于A的上下界估计指出扩张矩阵与经典球及欧氏范数匹配不佳,但欧氏范数相关于A仍能保持全局伸缩性.其次研究了相适应于扩张矩阵的扩张球和拟范数关于伸缩性、凸性、可积性、微分估计及傅里叶变换的一些性质.最后通过欧氏范数与相关于扩张矩阵的拟范数的不等式估计证明了相关于拟范数的两类施瓦茨函数空间和相关于欧氏范数的经典施瓦茨函数空间都是等价的. In this paper, we study some properties of dilated balls and quasi-norms associated with expansive matrix A. Firstly, we point out that expansive matrix can not match very well with classical balls and Euclidean norm via some specific examples and the bounded estimates of Euclidean norm associated with A, but the Euclidean norm still maintains the global flexibility associated with A. Secondly, we study some properties about dilated balls and quasi-norm associated with A in terms of flexibility, convexity, integrability, differential estimate and Fourier transform. Finally, we prove that two kinds of Schwartz function spaces associated with the corresponding quasi-norms are equivalent with the classical Schwartz function space.
作者 孙瑞瑞 李金霞 Sun Ruirui Li Jinxia(College of Mathematics and System Science, Xinjiang University, Urumuqi 830046, Chin)
出处 《纯粹数学与应用数学》 2017年第2期160-167,共8页 Pure and Applied Mathematics
基金 国家自然科学基金(11461065) 新疆维吾尔自治区青年博士培养计划(qn2015bs003)
关键词 各向异性 扩张矩阵 扩张球 施瓦茨函数空间 anisotropic, expansive matrix, dilated ball, Schwartz function space
  • 相关文献

参考文献1

二级参考文献9

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部