期刊文献+

面向半导体生产线基于MAS模糊协同的成品率预测方法 被引量:4

Fuzzy collaborative yield prediction approach based on MAS in semiconductor wafer fabrication
下载PDF
导出
摘要 针对传统成品率预测模型中需要大量缺陷信息且极少考虑范围预测的情况,借鉴多智能体思想,研究了一种模糊聚合与支持向量回归相融合的方法,对成品率进行预测。在逐步缩减预测范围的同时,多智能体协同调整学习速率等参数,根据确定好的参数构建多个模糊成品率学习模型;利用模糊规则对多个学习模型的预测结果进行聚合,以提高预测准确性;利用支持向量回归将聚合结果去模糊化,得到最终的成品率预测值。仿真实验表明,该方法预测过程较简便,预测范围更精确,具有可行性。 Aiming at problem that the existing methods needed to consider a lot of defect data and rarely estimate pre- diction range in traditional yield prediction model, based on Multi-Agent System (MAS), an approach which com- bined fuzzy rules intersection method and Support Vector Regression (SVR) was proposed to predict the semicon- ductor yield. Through reducing the prediction rang gradually and adjusting parameters such as learning rate coordi- nately by agents, multiple fuzzy yield learning models were constructed. The fuzzy forecasts of multiple fuzzy learn- ing models was aggregated with fuzzy rules, and the predicted accuracy was improved. SVR was adopted to defuzzi- fy the fuzzy yield prediction. Theoretic analysis and experiments showed that the proposed method was available, the forecasting process was relatively simple as well as the prediction range was more accurate than the existing methods.
作者 赵婷婷 曹政才 邱明辉 ZHAO Tingting CAO Zhengcai QIU Minghui(College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2017年第4期852-859,共8页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51375038) 北京市自然科学基金资助项目(4162046) 高等学校博士学科点专项科研基金博导类资助项目(20130010110009)~~
关键词 半导体生产线 成品率预测 多智能体 模糊聚合 支持向量回归 semiconductor wafer fabrication yield prediction multi-agent fuzzy intersection support vector regres-sion
  • 相关文献

参考文献3

二级参考文献21

  • 1李莉,乔非,姜桦,吴启迪.半导体生产线动态调度方法研究[J].计算机集成制造系统,2004,10(8):949-954. 被引量:14
  • 2李占明.多目标决策的效用函数方法[J].系统工程,1989,7(5):52-54. 被引量:22
  • 3乔非,许潇红,方明,吴启迪.半导体晶圆生产线调度的性能指标体系研究[J].同济大学学报(自然科学版),2007,35(4):537-542. 被引量:6
  • 4CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004.. 被引量:111
  • 5R E Langford, J J Liou, V Raghavan. The application and validation of a new robust windowing method for the Poisson yield model [ C ]. In Advanced Semiconductor Manufactur- ing Conference, IEEE/SEMI, Munich, Germany, 2001:157 - 160. 被引量:1
  • 6I Koren, Z Koren, C H Stepper. A unified negative binomial distribution for yield analysis of defect-tolerant circuits [ J ]. IEEE Transactions on Computers, 1993,42:724 -734. 被引量:1
  • 7L Tong, L C Chao. Novel yield model for integrated circuit with clustered defects [ J ]. Expert Systems with Applica- tions, 2008, 34:2334 -2341. 被引量:1
  • 8A Y Wong. A statistical parametric and probe yield analysis methodology [ C ]. Proceedings of IEEE International Sym- posium on Defect and Fault Tolerance in VLSI Systems, Boston, USA, 1996:131-139. 被引量:1
  • 9A Azadegan, S Ghazinoory, P Samouei. Fuzzy logic in man- ufacturing: A review of literature and a specialized applica- tion [ J ]. International Journal of Production Economics, 2011, 132(2): 258 -270. 被引量:1
  • 10王晖,陈丽,陈垦,薛漫清,梁庆.多指标综合评价方法及权重系数的选择[J].广东药学院学报,2007,23(5):583-589. 被引量:262

共引文献10

同被引文献24

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部