摘要
提出一种适用于铁路线路落石防护的新型柔性棚洞,利用金属柔性网和弹簧撑杆组成柔性耗能结构取代传统钢筋混凝土棚洞顶部铺设的砂、砾石垫层来达到缓冲消能目的。为准确评估该柔性棚洞结构的性能,采用动力有限元方法对其落石冲击过程进行了数值模拟,计算结构动力响应,并依据计算结果修正、优化结构设计;进一步开展1∶1结构局部模型落石冲击试验;测试得到冲击时长、金属柔性网最大挠度、支撑绳索力和弹簧撑杆轴向应变数据。经试验验证,数值计算结果可靠,在能级为50 k J的落石冲击作用下,结构主要构件均处于弹性工作状态。最后,针对存在的问题给出改进建议。
A new flexible rock-shed was presented for protection of railway from falling rocks. The shed consisted of a metal flexible net system connected with specific spring spacer bars. It was designed as a buffer against rock impact and replace an array of reinforced concrete portable frames linked with a longitudinal steel tube truss. In order to evaluate the performance of the flexible rock-shed, the numerical simulation was performed to investigate impact responses of the shed to rockfall. Then, the impact tests were conducted on a full-scale model for the local part of the prototype structure. The data obtained included impact time interval, maximum deflection of metal flexible net, tensile force of support ropes and axial strain of spring spacer bars. The numerical simulation results were verified with tested data. It was shown that the structure can withstand impact energy of 50 kJ, the main components of the shed are working within their elastic states. At last some complementary suggestions for improvement were offered. © 2017, Editorial Office of Journal of Vibration and Shock. All right reserved.
出处
《振动与冲击》
EI
CSCD
北大核心
2017年第9期172-178,246,共8页
Journal of Vibration and Shock
基金
山区桥梁与隧道工程国家重点实验室培育基地(重庆交通大学)开放基金(CQSLBF-Y13-9)
云南省科技富民强县计划基金(2015EA002)