摘要
提出一种汽车驱动桥系统的模态综合动力学建模与分析方法,采用非线性轴承单元实现传动系模型与桥壳模型的耦合建模,采用模态综合法对驱动桥各部件的有限元模型进行缩维变换,能够在准确模拟驱动桥系统动力学特性的同时大大缩减系统模型规模,从而快速准确地实现驱动桥系统的静力学非线性求解和动力学分析。以准双曲面齿轮有限元接触分析求得的动态啮合力作为系统激励,计算驱动桥系统的动力学响应,并进行试验验证,数值计算结果能够准确体现准双曲面齿轮动态啮合力激励下的驱动桥系统动力学特性,有效指导驱动桥的减振降噪设计。
A modal synthesis dynamic modeling and analysis method for an automotive drive axle system was proposed. The transmission system model and the housing model were coupled with nonlinear bearing elements. In order to realize static nonlinear solving and dynamic analysis of the drive axle system quickly and accurately, finite element models of its components were condensed with the modal synthesis method. Meshing forces of a couple of hypoid gears were calculated based on the finite element contact analysis method. The dynamic responses of the drive axle system excited by the meshing forces of the couple of hypoid gears were calculated and verified with tests. The numerical analysis results revealed the dynamic characteristics of the drive axle system under the excitation of the meshing forces of the couple of hypoid gears correctly and guided the vibration and noise reduction design of the drive axle effectively. © 2017, Editorial Office of Journal of Vibration and Shock. All right reserved.
出处
《振动与冲击》
EI
CSCD
北大核心
2017年第9期7-12,27,共7页
Journal of Vibration and Shock
基金
校企合作项目(20142000237)
关键词
驱动桥
模态综合法
准双曲面齿轮
动力学分析
Axles
Drive axles
Dynamic analysis
Gears
Modal analysis
Noise abatement
Vibration analysis