期刊文献+

基于同构合著网络的合作者推荐模型研究 被引量:2

Research on Co-author Recommender Model Based on Homogeneous Coauthor Networks
下载PDF
导出
摘要 随着社会网络的快速发展,对同构合著网络中合著关系推荐问题的研究现已成为一个研究热点.首先定义了合著关系和同质性;其次给出不同情况下合著关系特征,建立合著关系推荐模型,并提出了不同情况下产生合著关系推荐的算法.实验表明,通过该模型可为作者推荐适合的合著者. With the rapid development of social network,cooperation relationship recommender has become a tend. First,we define coooperation relationship and homogeneity in this paper. Second,the characteristics of coopration relationship in different conditions are given. Third,we build the model of co-author recommender,and propose different methods to recommend the best co-author.Finally experimental data is collected and calculated. Experiments show that the proposed methods are reasonable and effective.
作者 刘欣 杜秀春 康文杰 LIU Xin DU Xiuchun KANG Wenjie(College of Computer Engineering and Applied Mathematics, Changsha University,Changsha Hunan 410022, China School of Computer, National University of Defense Technology, Changsha Hunan 410073 , China)
出处 《长沙大学学报》 2017年第2期62-66,共5页 Journal of Changsha University
基金 湖南省教育厅基金(批准号:14C0095)资助项目
关键词 同构合著网络 作者相似性 学科相似性 信任度 homogeneous coauthor networks author comparability professional discipline similarity trust degree
  • 相关文献

参考文献3

二级参考文献43

  • 1刘宏鲲,周涛.中国城市航空网络的实证研究与分析[J].物理学报,2007,56(1):106-112. 被引量:144
  • 2Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217. 被引量:1
  • 3Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53. 被引量:1
  • 4Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911. 被引量:1
  • 5Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth. 被引量:1
  • 6Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf. 被引量:1
  • 7Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237. 被引量:1
  • 8Billsus D,Pazzani M J.Learning collaborative information filters[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:46-53. 被引量:1
  • 9Basu C,Hirsh H,Cohen W W.Recommendation as classification:using social and content-based information in recommendation[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:714-720. 被引量:1
  • 10Sarwar B M,Karypis G,Konstan J A,et al.Analysis of recommendation algorithms for e-commerce[C]//Proceedings of the 2nd ACM Conference on Electronic Commerce (EC'00).New York:ACM Press,2000:285-295. 被引量:1

共引文献413

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部