期刊文献+

基于LSSVM-ARMA模型的高层建筑地基变形时间序列预测 被引量:1

Time series forecast for foundation deformation of tall building based on LSSVM-ARMA model
下载PDF
导出
摘要 由于建筑物沉降受多种因素的影响和制约,其变化规律很难用一个显式的数学公式予以正确表达。本文基于时间序列预测法,结合小波变换、粒子群优化的最小二乘支持向量机和自回归移动平均模型建立了联合的预测方法和模型。将沉降变形时间序列通过小波分解和重构为趋势时间序列、随机时间序列。分别对趋势时间序列和随机时间序列采取滚动预测,最后将两个序列预测结果叠加即为最终预测结果。通过算例分析表明,该方法用于建筑物沉降与倾斜预测是可行的。 Due to the settlement of buildings influenced by many factors and constraints, it is difficult to use an explicit mathematical formula to express the change. Based on time series forecasting method, the wavelet transform, least squares support vector machine (LSSVM) optimized by panicle swarm optimization (PSO) and autoregressive moving average model (ARMA) are combined together and a united forecast method and model is proposed in this paper. The time series of settlement deformation is decomposed and reconstructed by wavelet transform, which is a trend series, and random series. The trend series and random series use different models to forecast, finally, the sum of trend series and random series are used as the final forecast value. Take advantage of an exampIe, the method is feasible for the prediction of building settlement and building inclination.
出处 《工程勘察》 2017年第5期32-38,47,共8页 Geotechnical Investigation & Surveying
基金 国家自然科学基金重点项目(No:51234004) 国家自然科学基金青年项目(No:51304088)
关键词 PSO-LSSVM ARMA模型 高层建筑 地基变形 时间序列预测 PSO-LSSVM ARMA model tall building foundation deformation time series forecast
  • 相关文献

参考文献15

二级参考文献115

共引文献367

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部