期刊文献+

Structural and Electrochemical Performances of α-MnO2 Doped with Tin for Supercapacitors

Structural and Electrochemical Performances of α-MnO_2 Doped with Tin for Supercapacitors
下载PDF
导出
摘要 To improve the electrochemical performances of α-MnO2 as electrode materials for supercapacitors, Sn-doped α-MnO2 in the presence of the doping amount of 1%-4% was successfully synthesized by hydrothermal method. As-prepared α-MnO2 presents nanorod shape and no other impurities exist. By ultraviolet-visible absorption spectroscopy, it is convinced that the band gaps of α-MnO2 decrease with increasing Sn-doping amount. Cyclic voltammetry investigation indicates that undoped and doped α-MnO2 all have regular capacitive response. As the scan rate enlarged, the profiles of curves gradually deviate from rectangle. Compared with undoped α-MnO2, doped α-MnO2 has larger specific capacitance. The specific capacitance of 3% doped α-MnO2 reaches 241.0 F/g while undoped α-MnO2 only has 173.0 F/g under 50 m A/g current density in galvanostatical charge-discharge measurement. Enhanced conductivity by Sn-doping is considered to account for doped sample's enhanced electrochemical specific capacitance. To improve the electrochemical performances of α-MnO2 as electrode materials for supercapacitors, Sn-doped α-MnO2 in the presence of the doping amount of 1%-4% was successfully synthesized by hydrothermal method. As-prepared α-MnO2 presents nanorod shape and no other impurities exist. By ultraviolet-visible absorption spectroscopy, it is convinced that the band gaps of α-MnO2 decrease with increasing Sn-doping amount. Cyclic voltammetry investigation indicates that undoped and doped α-MnO2 all have regular capacitive response. As the scan rate enlarged, the profiles of curves gradually deviate from rectangle. Compared with undoped α-MnO2, doped α-MnO2 has larger specific capacitance. The specific capacitance of 3% doped α-MnO2 reaches 241.0 F/g while undoped α-MnO2 only has 173.0 F/g under 50 m A/g current density in galvanostatical charge-discharge measurement. Enhanced conductivity by Sn-doping is considered to account for doped sample's enhanced electrochemical specific capacitance.
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期237-244,共8页 武汉理工大学学报(材料科学英文版)
基金 Funded by The National Natural Science Foundation of China(51402185) the Natural Science Foundation of Shanghai(13ZR1454700)
关键词 doping capacitors electrochemical characterizations electronic conductivities doping capacitors electrochemical characterizations electronic conductivities
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部