摘要
During oil-gas well drilling and completion, downhole tools and apparatus should be conveyed to the destination to complete a series of downhole works. Downhole tractors have been used to convey tools in complex wellbores, however a very large tractive force is needed to carry more downhole tools to accomplish works with high efficiency. A novel serial active helical drive downhole tractor which has significantly improved performance compared with previous work is proposed. All previously reported helical drive downhole tractors need stators to balance the torque generated by the rotator. By contrast, the proposed serial downhole tractor does not need a stator; several rotator-driven units should only be connected to one another to achieve a tractive force multifold higher than that was previously reported. As a result, the length of a single unit is shortened, and the motion flexibility of the downhole tractor is increased. The major performance indicators, namely, gear ratio, velocity, and tractive force, are analyzed. Experimental results show that the maximum tractive force of a single-unit prototype with a length of 900 mm is 165.3 kg or 1620 N. The analysis and experimental results show that the proposed design has considerable potential for downhole works.
During oil-gas well drilling and completion, downhole tools and apparatus should be conveyed to the destination to complete a series of downhole works. Downhole tractors have been used to convey tools in complex wellbores, however a very large tractive force is needed to carry more downhole tools to accomplish works with high efficiency. A novel serial active helical drive downhole tractor which has significantly improved performance compared with previous work is proposed. All previously reported helical drive downhole tractors need stators to balance the torque generated by the rotator. By contrast, the proposed serial downhole tractor does not need a stator; several rotator-driven units should only be connected to one another to achieve a tractive force multifold higher than that was previously reported. As a result, the length of a single unit is shortened, and the motion flexibility of the downhole tractor is increased. The major performance indicators, namely, gear ratio, velocity, and tractive force, are analyzed. Experimental results show that the maximum tractive force of a single-unit prototype with a length of 900 mm is 165.3 kg or 1620 N. The analysis and experimental results show that the proposed design has considerable potential for downhole works.
基金
Supported by Sichuan Provincial Science and Technology Program of China(Grant Nos.2013GZ0150,2014GZ0121)
Research Project of Key Laboratory of Fluid and Power Machinery of Ministry of Education,Xihua University,China