期刊文献+

基于神经网络的热镀锌镀层厚度建模与预测方法 被引量:3

Study on the Modeling and Prediction of Coating Weight in Hot Dip Galvanizing Line Based on Neural Network
下载PDF
导出
摘要 连续热镀锌是现代镀锌生产的主要方法,但其镀层厚度系统具有非线性、多变量、时变大滞后等特点,难以建模与控制。本文在对镀锌生产线原理、镀层厚度影响因素分析的基础上,构建与训练镀层厚度预测神经网络模型,该模型具有预测精度高,增益准确,覆盖全工况的优点,为下一步镀层厚度控制系统的开发奠定了基础。 Continuous hot-dip galvanizing is the majormethod of modern galvanizing production. However, the coating weight system is nonlinear process with multi-variables and large time-variant delay, leading to the difficulties both in modelling and control. Through the analysis on the mechanism of hot-dip galvanizing line and the influence factors of coating weight, a Neural Network model is built and trained in this work. The derived model has high accuracy bothin predictionsand gainscovering all the operating conditions, which paves a new way to develop the coating weight control system.
出处 《中国仪器仪表》 2017年第4期65-68,共4页 China Instrumentation
关键词 神经网络 模型 镀层厚度 非线性 增益 Neural network Model Coating weight Nonlinear Gain
  • 相关文献

参考文献3

二级参考文献17

  • 1雷锐光.锡层厚度无模型自适应控制系统[J].控制工程,2005,12(5):423-425. 被引量:3
  • 2刘海龙.热镀锌线锌层厚度的闭环控制简介[J].四川冶金,2006,28(6):34-37. 被引量:10
  • 3张毅,杨煜普.自适应修正Smith算法在时滞系统中的应用[J].自动化仪表,2007,28(2):37-39. 被引量:7
  • 4Toshihiko Watanabe, Hiroshi Narazaki,Yasutaka Uchiyama, et al. An Adaptive Fuzzy Modeling for Continuous Galvani zing Line[J]. IEEE, 1997,3(5) :664. 被引量:1
  • 5Yeon-Tae Kim. An Automatic Coating Weight Control for Continuous Galvanizing Line [C]//International Conference on Control, Automatic and Systems, 2008, COEX, Seoul, Korea : 2008. 被引量:1
  • 6Wang Pengfei, Zhang Dianhua, Liu Jiawei. Roll Cooling Control for Flatness Control of Cold-Rolled Strip[C]//Pro ceedings of the 10th International Conference on Steel Rolling. Beijing : 2010. 被引量:1
  • 7Guelton N, Lerouge A. Coating Weight Control on Arcelor- Mittal's Galvanizing Line at Florange Works[J] Control En- gineering Practice,2010,5(8) : 1016. 被引量:1
  • 8Ersen K, Leyla K, Etem K. A Modern Control System Ap- plication in Metals Processing and Technological Progress[J]. IEEE Transactions on Power Systems, 2003,11(1) :865. 被引量:1
  • 9Graham C G, Sang J L. Application Kalman Filtering to Zinc Coating Mass Estimation[J]. IEEE Transactions on Control Systems Technology, 1994,1(4) : 1539. 被引量:1
  • 10Yoo S R,Choi I S,Nam P K. Coating Deviation Control in Transverse Direction for a Continuous Galvanizing Line [J] IEEE Transactions on Control Systems Technology, 1999,7 (1) : 129. 被引量:1

共引文献6

同被引文献30

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部