期刊文献+

基于情境推演的微博突发事件预测模型研究 被引量:4

MEPD:A Micro-blog Emergent Incident Prognosis Model Based on Situation Deduction
下载PDF
导出
摘要 微博信息平台的高速发展,给网络突发事件管理带来了信息量激增等新挑战。为应对这些问题,研究并提出了一个新型的微博突发事件发现与预测模型,该模型基于情境推演算法构建,通过历史数据与现场情境数据的信息融合匹配进行事件发展预判;通过深层发掘和融合,对突发事件的未来情境进行预测和刻画。数据仿真实验证明,该模型具有较高的预测准确性、较全面的事件关键节点覆盖度和较好的时效性。 High-speed evolution of the micro-blog information platforms has brought many management challenges such as information deposition to Internet emergent incident managers. In response to the problems, a new micro-blog emergent incident prediction model was researched and proposed based on the situation deduction algorithms. The model fused fusion historical data and field event data to predict the emergent incident prospects. And it used the re- lated situation space to mine the microscopic situation and integrated the key event nodes to forecast the development trend of emergent incidents. Data simulation results show that the model has higher prediction accuracy, greater cov- erage and better timeliness than the old does so.
作者 王征 杨茜 Wang Zheng Yang Qian(School of Economics Information Engineering and Post Graduation, Southwest University of Finance and Economics, Chengdu 611130)
出处 《情报学报》 CSSCI CSCD 北大核心 2017年第3期267-273,共7页 Journal of the China Society for Scientific and Technical Information
基金 国家社会科学基金青年项目"群体性事件管理推演与应对措施验证研究"(14CGL050)
关键词 突发事件 微博 情境 推演 预测 emergent incident micro-blog situation deduction prognosis
  • 相关文献

参考文献4

二级参考文献56

  • 1人文主义[EB/OL].(2007-12-02).http://baike.baidu.com. 被引量:14
  • 2方锦清,汪小帆,郑志刚,毕桥,狄增如,李翔.一门崭新的交叉科学:网络科学(上)[J].物理学进展,2007,27(3):239-343. 被引量:129
  • 3Diao Q M,Jiang J,Zhu F D. Finding Bursty Topics from Microb-logs[C]. In: Proceedings of ACL,2012:536-544. 被引量:1
  • 4Du Y Y,Wu W,He Y X, et al. Microblog Bursty Feature Detec-tion Based on Dynamics Model[C]. In: Proceedings of the In-ternational Conference on SystemsandInformatics ( ICSAI ) ,2012:2304-2308. 被引量:1
  • 5http:/ / ictclas. nlpir. org /. 被引量:1
  • 6Kleinberg J. Bursty and Hierarchical Structure in Streams[J]. Da-ta Mining and Knowledge Discovery,2003,7(4):373-397. 被引量:1
  • 7Bun K K, Ishizuka M. Topic Extraction from News Archive Us-ingTF* PDF Algorithm[C]. In: Proceedings of the 3rd Interna-tional Conference on Web Information Systems Engineering,2002:73-82. 被引量:1
  • 8Diao Q M,Jiang J,Zhu F D. Finding Bursty Topics from Microb-logs[C].In: Proceedings of ACL,2012:536-544. 被引量:1
  • 9ZHAO Jie, WANG Xueya, MA Zheng. Towards events detec- tion from microblog messages [ J]. International Journal of Hy- brid Information Technology, 2014, 7 (1): 201-210. 被引量:1
  • 10MATHIOUDAKIS M, KOUDAS N. Twittermonitor: trend de- tection over the twitter stream [ C ] //Proc. of SIGMOD, 2010: 1155-1158. 被引量:1

共引文献33

同被引文献96

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部