期刊文献+

基于CUBLAS和CUDA的MNF并行算法设计与优化 被引量:3

Parallel Algorithm Design and Performance Optimization of Maximum Noise Fraction Rotation Based on CUBLAS and CUDA
下载PDF
导出
摘要 为实现高光谱影像数据快速降维,基于nVidia的图像处理单元(graphic processing unit,GPU)研究最大噪声分数变换(Maximum Noise Fraction Rotation,MNF Rotation)降维算法的并行设计与优化,通过对加速热点并行优化,择优整合,设计并实现基于CUBLAS(CUDA Basic Linear Algebra Subprograms)库的MNF-L(MNF-on-Library)算法和基于CPU/GPU异构系统的MNF-C(MNF-on-CUDA)算法.实验结果显示MNF-L算法加速11.5~60.6倍不等,MNF-C算法加速效果最好,加速46.5~92.9倍不等.研究结果表明了GPU在高光谱影像线性降维领域的巨大优势. To rapidly reduce the huge dimensions of hyperspectral image, this paper investigated the design and optimization of the parallel Maximum Noise Fraction (MNF) Rotation algorithm based on nVidia graphic processing units (GPUs). In particular, a MNF-L (MNF-on-Library) algorithm based on the CUBLAS library functions and a MNF-C(MNF-on-CUDA) algorithm on the CPU/GPU heterogeneous system was presented by designing mapping schemes and parallel optimizing strategies. Experiment result shows that the MNF-L algorithm can obtain the speedups between 11.5 and 60.6, and the MNF-C algorithm can get the speedups between 46.5 and 92.9. Therefore, GPUs have a great advantage in reducing dimensions of hyperspectral images.
作者 周海芳 高畅 方民权 ZHOU Haifang GAO Chang FANG Minquan(School of Computer, National University of Defense Technology, Changsha 410073, China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期147-156,共10页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(61272146) 国防科学技术大学优秀研究生创新资助项目(B151101)~~
关键词 图像处理单元 GPU性能优化 高光谱影像降维 最大噪声分数变换 协方差矩阵计算 graphic processing unit performance optimization for GPU dimensionality reduction of hyperspectral image maximum noise fraction rotation covariance matrix calculation
  • 相关文献

参考文献5

二级参考文献27

  • 1陆筱霞,段光明,李思昆.基于GPU的遥感纹理压缩解压算法[J].系统仿真学报,2009,21(S1):42-45. 被引量:2
  • 2吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 3张兵,陈正超,郑兰芬,童庆禧,刘银年,杨一德,薛永祺.基于高光谱图像特征提取与凸面几何体投影变换的目标探测[J].红外与毫米波学报,2004,23(6):441-445. 被引量:21
  • 4NAMATA T, SUDA R. APTCC: auto parallelizing translator from C to CUDA[J]. Procedia Computer Science,2011,4:352-361. 被引量:1
  • 5Nvidia Corporation. CUDA C programming guide[EB/OL]//(2011- 03-06) [2012-09-05]. http://www, does. nvidia, com/cuda. 被引量:1
  • 6Nvidia Corporation. Parallel programming and computing platform [EB/OL]. (2012-04-13) [2012-09-05]. http://www, nvidia, com/ object/cuda_home_new. html. 被引量:1
  • 7Nvidia Corporation. CUDA C Best Practices Guide[EB/OL]. (2011- 03-06) [2012-09-05]. http://www, docs. nvidia, com/cuda. 被引量:1
  • 8HARRIS C, HAINES K, STAVELEY -SMITH L. GPU accelerated radio astronomy signal convolution[J]. Experimental Astronomy, 2008, 22(1): 129-142. 被引量:1
  • 9CORRIGAN A, CAMELLI F F, LOHNER R, et al. Running un- structured grid-based CFD solvers on modem graphics hardware[J]. International Journal for Numerical Methods in Fluids, 2011, 66(2) : 221-229. 被引量:1
  • 10CRANE K, LLAMAS I, TARIQ S. Real-time simulation and ren- dering of 3d fluids[J]. GPU Gems, 2007, 3:663-675. 被引量:1

共引文献13

同被引文献7

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部