期刊文献+

基于多因素贝叶斯的遮挡目标检测

DETECTION OF OCCLUSION TARGET BASED ON MULTI-FACTOR BAYES
下载PDF
导出
摘要 复杂场景中的遮挡现象会造成目标外观信息损失,致使检测过程中容易出现目标遗漏。通过分析目标表示对特定布局的依赖性,提出一种基于多因素贝叶斯的遮挡目标检测方法。首先,使用部件模型提供目标局部区域的候选提议,然后,根据空间布局关系估计部件的可见性概率,并同时考虑目标部件的外观特征和形变位置,最后,构建基于外观、形变、可见性因素的贝叶斯模型,并采用最大化曲线下方面积设计目标检测评价函数,完成多因素权重学习。实验结果证明在PASCAL数据集中的有效性,优于目标检测的现有方法。 Occlusion in complex scenes can result in loss of target appearance information, which leads to the loss of target in the detection process. By analyzing the dependence of the target representation on a particular layout, a multi-factor Bayesian method for occlusion target detection is proposed. First, a candidate proposal for the target local region is provided using the component model. Then, the visibility probability of the components is estimated according to the spatial layout, and the appearance characteristics and the deformation position of the target components are also considered. Finally, to complete the multi-factor weight learning,a Bayesian model based on appearance, deformation and visibility factors is constructed, and the area under the maximum curve is used to design the target detection and evaluation function. The experimental results demonstrate the effectiveness of the PASCAL data set, which outperforms the existing methods of target detection.
出处 《计算机应用与软件》 2017年第4期188-192,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61273273 61503111 61501467)
关键词 遮挡目标检测 可见性 多因素 贝叶斯 Occlusion target detection Visibility Multi-factor Bayes
  • 相关文献

参考文献2

二级参考文献222

  • 1王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 2Zhang D S,Islam M M,Lu G J.A review on automatic image annotation techniques[J].Pattern Recognition,2012,45(1):346-362. 被引量:1
  • 3Chadha A,Mallik S,Johar R.Comparative study and optimization of feature extraction techniques for content based image retrieval[J].International Journal of computer application,2012,52(20):35-42. 被引量:1
  • 4肖睿,陆乃将,施鹏飞.鞋印匹配算法[C]//第十三届全国图像图形学学术会议,南京,2006:256-360. 被引量:1
  • 5Tang C Q,Dai X J.Automatic shoe sole pattern retrieval system based on image content of shoeprint[C]//Proceedings of International Conference on Computer Design and Application,Qinhuangdao,2010:602-605. 被引量:1
  • 6Rathinavel S,Arumugam S.Full shoe print recognition on pass band DCT and partial shoe print identification using overlapped block method for degraded images[J].International journal of computer application,2011,26(8):16-21. 被引量:1
  • 7Bradski G,Kaehler A.学习Open CV[M].北京:清华大学出版社,2009:155-161. 被引量:1
  • 8Hu M K.Visual pattern recognition by moment invariant[J].IRE Transaction On Information Theory,1962,8(2):179-187. 被引量:1
  • 9Sing S M,Hemachandran K.Content-Based image retrieval using Color Moment and Gabor texture feature[J].International journal of computer science issues,2012,9(1):229-309. 被引量:1
  • 10Roslan R,Jamil N.Texture feature extraction using 2-D Gabor filter[C]//Proceedings of IEEE Symposium on Computer Applications and Industrial Electronics,Kota Kinabalu,2012:173-178. 被引量:1

共引文献407

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部