期刊文献+

Quantification of ventilation enhancement using the Eye CAN roof support 被引量:3

Quantification of ventilation enhancement using the Eye CAN roof support
下载PDF
导出
摘要 Convergence of roof and floor in underground mine openings is a common occurrence. This convergence not only adversely affects the ability of workers, equipment and supplies to travel through the mine, it also reduces the effectiveness of the mine ventilation system, which is essential for the dilution of methane gas and airborne respirable dust. While installing secondary standing supports to control floor and roof convergence, such supports, by nature, partially obstruct a portion of the airway. These added obstructions inhibit the ability of the ventilation system to operate as efficiently as it could by increasing the resistance in and reducing the cross-sectional area of the airway. This study introduces and demonstrates the benefits of The Eye CAN^(TM) standing roof support, which controls floor and roof convergence and is less obstructive to air flow than conventional wooden cribs. Laboratory findings show that the normal resistance of a supported lined airway is reduced by using this new product from Burrell Mining Products, Inc., while providing the same roof support characteristics of an established product—The CANò. Load vs. displacement curves generated from laboratory tests demonstrated that this new product behaves with the same roof support characteristics as others in The CAN product family. Ventilation data gathered from a simulated mine entry was then used for computational fluid dynamics(CFD) modeling.The CFD analysis showed an improvement with The Eye CAN vs. other accepted forms of standing roof support. This proof-of-concept study suggests that, when using this new product made by Burrell Mining Products, Inc., not only will the convergence from the roof and floor be controlled, but airway resistance will also be reduced. Convergence of roof and floor in underground mine openings is a common occurrence. This convergence not only adversely affects the ability of workers, equipment and supplies to travel through the mine, it also reduces the effectiveness of the mine ventilation system, which is essential for the dilution of methane gas and airborne respirable dust. While installing secondary standing supports to control floor and roof convergence, such supports, by nature, partially obstruct a portion of the airway. These added obstructions inhibit the ability of the ventilation system to operate as efficiently as it could by increasing the resistance in and reducing the cross-sectional area of the airway. This study introduces and demon- strates the benefits of The Eye CANTM standing roof support, which controls floor and roof convergence and is less obstructive to air flow than conventional wooden cribs. Laboratory findings show that the nor- mal resistance of a supported lined airway is reduced by using this new product from Burrell Mining Products, Inc., while providing the same roof support characteristics of an established product--The CAN~. Load vs. displacement curves generated from laboratory tests demonstrated that this new product behaves with the same roof support characteristics as others in The CAN product family. Ventilation data gathered from a simulated mine entry was then used for computational fluid dynamics (CFD) modeling. The CFD analysis showed an improvement with The Eye CAN vs. other accepted forms of standing roof support. This proof-of-concept study suggests that, when using this new product made by Burrell Mining Products, Inc., not only will the convergence from the roof and floor be controlled, but airway resistance will also be reduced.
出处 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第1期153-158,共6页 矿业科学技术学报(英文版)
关键词 Standing roof support CAN Ventilation LOAD-DISPLACEMENT Eye CAN Standing roof support CAN Ventilation Load-displacement Eye CAN
  • 相关文献

同被引文献14

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部