期刊文献+

一种计算代价敏感算法分类精度的方法 被引量:4

A method of classification accuracy calculation for cost sensitive algorithms
下载PDF
导出
摘要 代价敏感普遍应用于解决分类不平衡问题,但代价敏感算法一直没有一个客观的评价标准.本文提出一种针对代价敏感算法的分类精度计算方法,以平衡精度替换总体精度来有效地评定代价敏感算法的分类性能.相比于传统的总体精度,该平衡精度不会忽略小类样本的贡献.通过代价敏感超限学习机对基因表达数据进行分类对比实验,结果表明,平衡精度可以更为客观、合理地表示代价敏感算法的分类性能. Cost sensitive algorithms are widely applied to solve the problem of unbalanced classification. However, there is no objective evaluation criteria for cost sensitive algorithms. This paper proposes a method of classification accuracy calculation for cost sensitive algorithms. Balance accuracy is utilized instead of overall accuracy to effectively assess the performance of cost sensitive algorithms. Compared with overall accuracy, the proposed balance accuracy will not neglect the contribution of samples in small classes. In the experiment, we classified gene expression data with cost sensitive extreme learning machines. The result shows the balance accuracy is a valid criterion for evaluating classification performance.
出处 《中国计量大学学报》 2017年第1期92-96,共5页 Journal of China University of Metrology
基金 国家自然科学基金资助项目(No.61272315 61602431) 浙江省自然科学基金资助项目(No.Y1110342)
关键词 代价敏感 平衡精度 超限学习机 基因表达数据 cost sensitive balance accuracy extreme learning machine gene expression data
  • 相关文献

参考文献6

二级参考文献156

  • 1郑恩辉,李平,宋执环.代价敏感支持向量机[J].控制与决策,2006,21(4):473-476. 被引量:33
  • 2陈斌,冯爱民,陈松灿,李斌.基于单簇聚类的数据描述[J].计算机学报,2007,30(8):1325-1332. 被引量:18
  • 3周志华.普适机器学习[EB/OL].http://WWW.intsci.ac.cn/research/zhouzh04.ppt,2003 被引量:2
  • 4Drummond C,Holte R.Exploiting the Cost (in)Sensitivity of Decision Tree Splitting Criteria[A].Proc of the 17th Int Conf on Machine Learning[C].San Francisco,2000:239-246. 被引量:1
  • 5Fan W,Stolfo S,Zhang J,et al.AdaCost:Misclassification Cost-sensitive Boosting[A].Proc of the 16th Int Conf on Machine Learning[C].Bled,1999:97-105. 被引量:1
  • 6Zadrozny B,Langford J,Abe N.Cost-sensitive Learning by Cost-proportionate Example Weighting[A].Proc of the 3rd IEEE Int Conf on Data Mining[C].Melbourne,2003. 被引量:1
  • 7Vapnik V N.An Overview of Statistical Learning Theory[J].IEEE Trans on Neural Networks,1999,10(5):988-999. 被引量:1
  • 8Burges C.A Tutorial on Support Vector Machines from Pattern Recognition[J].Data Mining and Knowledge Dlscovery,1998,2(2):121-167. 被引量:1
  • 9Michie,Spiegelhalter D J,Taylor C C.Machine Learning,Neural and Statistical Classification[EB/OL].http://www.ncc.up.pt/liacc/ML/statlog/data.html,2004. 被引量:1
  • 10Han J,Kamber M.Data Mining:Concepts and Techniques[M].San Francisco CA:Morgan Kaufmann,2001. 被引量:1

共引文献204

同被引文献26

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部