期刊文献+

基于用户行为的情感影响力和易感性学习 被引量:7

Learning Influences and Susceptibilities for Sentiments from Users' Behaviors
下载PDF
导出
摘要 在不同情感极性上建模用户间的影响力是观点形成和病毒式营销的一个关键问题.已有工作将用户间影响力直接定义在用户对上,无法刻画未观测到用户对之间的关联关系,造成用户影响力学习的过拟合问题.此外,目前尚无针对不同情感极性的用户间影响力建模的有效方法.因此,该文提出一种融合情感因素的用户分布式表达模型.该模型首先构建两个低维参数矩阵度量在不同情感极性上传播者的影响力和接受者的易感性,然后通过生存分析模型刻画级联的传播行为,最后利用负采样方法解决模型中存在正负例严重不平衡的问题.基于带有情感观点的微博转发所形成级联数据集的实验结果表明,与基准方法对比,该文方法在"预测动态级联"和"谁将会被转发"任务上MRR指标分别提高了273%和32.4%,在"级联大小预测"任务上MAPE指标下降了10.46%,很好地验证了该文模型的有效性.此外,该文分析用户的情感影响力和易感性分布并发现了一些重要的现象. Modeling interpersonal influence on different sentiments is a key issue for opinion formation and viral marketing.Previous works directly define interpersonal influence on each pair of users.They fail to depict the unobserved relationships between user pairs and thus suffer from the overfitting problem of learning users' influences.Moreover,there are still not effective solutions to integrate users' sentiments to understand the interpersonal influence.Therefore,we propose a user's distributed representation model with sentimental factors.Firstly,two lowdimensional parameter matrices are applied to represent opinion propagators' influences and opinion recipients' susceptibility on different sentiments.And then,we describe cascade behaviorswith the survival analysis model.Finally,the imbalance of positive and negative cases is solved by employing negative case sampling technique,according to the distribution of infected users' frequency.Experimental results conducted on Microblog database with different sentiments showed that,compared to the state-of-the-art models,our model improved 273% and 32.4% on MRR metrics on"Predicting Cascade Dynamics"and"Who will Be Retweeted"tasks respectively,and reduced 10.46% on MAPE metrics on "Cascade Size Predicting"task,which verified the validity of our model.Besides,analyzing the distribution of learned users' sentimental influences and susceptibilities resulted in some important discoveries.
出处 《计算机学报》 EI CSCD 北大核心 2017年第4期955-969,共15页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金(2013CB329606 2013CB329602) 国家自然科学基金项目(61572467 61300105) 中国科学院网络数据科学与技术重点实验室开放基金课题(CASNDST20140X)资助~~
关键词 在线社交网络 观点传播 影响力 易感性 级联 online social networks opinion propagation influence susceptibility cascade
  • 相关文献

参考文献1

二级参考文献26

  • 1Domingos P, Richardson M. Mining the network value of customers//Proceedings of the 7th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2001: 57-66. 被引量:1
  • 2Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing//Proeeedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:61-70. 被引量:1
  • 3Kempe D, Kleinberg J, Tardos L. Maximizing the spread of influence through a social network//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2003: 137-146. 被引量:1
  • 4Leskovec J, Krause A, Guestrin C, et al. Cost-effective out- break detection in networks//Proeeedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007:420-429. 被引量:1
  • 5Chen Wei, Wang Ya-Jun, Yang Si-Yu. Efficient influence maximization in social networks//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 199-207. 被引量:1
  • 6Estavez Pablo A, Vera P, Saito K. Selecting the most influential nodes in social networks//Proceedings of the 2007 International Joint Conference on Neural Networks. Orlando, USA, 2007:2397-2402. 被引量:1
  • 7Chen Wei, Wang Chi, Wang Ya-Jun. Scalable influence maximization for prevalent viral marketing in large-scale social networks//Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA, 2010:1029-1038. 被引量:1
  • 8Chen Wei, Yuan Yi-Fei, Zhang Li. Scalable influence maxi- mization in social networks under the linear threshold model //Proceedings of the 10th IEEE International Conference on Data Mining. Sydney, Australia, 2010:88-97. 被引量:1
  • 9Chen Wei, Collins A, Cummings R, et al. Influence maximi- zation in social networks when negative opinions may emerge and propagate//Proceedings of the llth SIAM International Conference on Data Mining. Mesa, USA, 2011:379 -390. 被引量:1
  • 10Narayanam R, Narahari Y. A shapley value-based approach to discover influential nodes in social networks. IEEE Transactions on Automation Science and Engineering, 2010, 8(1): 130- 147. 被引量:1

共引文献55

同被引文献73

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部