期刊文献+

基于贝叶斯网络和GPS轨迹数据的出行方式识别 被引量:7

Travel Mode Detection Based on GPS Track Data and Bayesian Network
下载PDF
导出
摘要 为了从大规模GPS轨迹数据中提取出行行为建模所需的必要信息,文章将贝叶斯网络应用到GPS数据处理过程中,建立了出行方式识别的贝叶斯网络模型以个体出行者作为研究对象,以智能手机采集的轨迹信息作为数据源,利用K2算法学习贝叶斯网络结构,采用极大似然估计法学习贝叶斯网络参数。以建立的贝叶斯网络模型为基础,推断了样本的出行方式,实现了步行、自行车、电动车、公交车和小汽车共五种出行方式的自动化识别研究表明,贝叶斯网络适用于出行方式识别研究,且低速点比例和平均方向改变两个指标可以有效提高出行方式识别准确度. To extract necessary information for investigating travel behavior from a large quantity of track data generated in household travel surveys,a Bayesian network was developed and applied to process the data.Taking individual travelers as objects and track data recorded by smartphones as data sources,we identified travel modes by learning Bayesian network structure using K2 algorithms and estimating network parameters with maximum likelihood methods.We additionally automatically derived travel modes for trips by walk,bicycle,e-bicycle,bus and car by means of the Bayesian network erected in this paper.Results from the study demonstrate that Bayesian network is suitable for travel mode detection and that rate of points with low speed and average direction change provide an opportunity to increase detection accuracy of travel modes.
出处 《统计与决策》 CSSCI 北大核心 2017年第6期75-79,共5页 Statistics & Decision
基金 国家自然科学基金资助项目(51478266)
关键词 贝叶斯网络 结构学习 参数学习 出行方式 Bayesian belief network structure learning parameter learning travel mode
  • 相关文献

参考文献3

  • 1邓中伟..面向交通服务的多源移动轨迹数据挖掘与多尺度居民活动的知识发现[D].华东师范大学,2012:
  • 2张俊峰..基于GPS技术的出行OD调查研究[D].北京交通大学,2011:
  • 3鲜于建川,隽志才,朱泰英.基于贝叶斯网络的出行选择行为分析[J].交通运输系统工程与信息,2011,11(5):167-172. 被引量:10

二级参考文献8

  • 1Moninder S,Marco,V.Construction of Bayesian network structures from data:A brief survey and an efficient algorithm [J].International Journal of Approximate Reasoning,1995,12(2):111-131.. 被引量:1
  • 2Ye X.Development of models for understanding causal relationship among activity and travel variables [D].University of South Florida, 2006.. 被引量:1
  • 3Primerano F, Taylor M A P, Pitaksringkarn L, et al.P.Defining and understanding trip chaining behavior [J].Transportation, 2008, 35(1): 55-72.. 被引量:1
  • 4Nobis C.Multimodality:Facets and causes of sustainable mobility behavior [J].Transportation Research Record,2007,2010:35-44.. 被引量:1
  • 5Currie G,Delbosc A.Exploring the trip chaining behavior of public transport users in Melburne [J].Transport Policy, 2011, 18(1): 204-210.. 被引量:1
  • 6Janssen D,Wets G,Bruijs K,et al.Identifying behavioral principles underlying activity patterns by means of Bayesian networks[C].the 82nd Annual Meeting of the Transportation Research Board, 2003, Washington, D.C.. 被引量:1
  • 7Jianchuan X Y, Zhicai J, Linjie G, et al.Empirical analysis of commuters’ nonwork stopmaking behavior in Beijing, China [J].Journal of Transportation Engineering, 2011, 137(5): 360-369.. 被引量:1
  • 8Pinjari A R, Bhat C R.A multiple discretecontinuous nested extreme value (MDCNEV) model: formulation and application to non-worker activity timeuse and timing behavior on weekdays [J].Transportation Research Part B, 2010, 44(4): 562-583.. 被引量:1

共引文献9

同被引文献51

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部