期刊文献+

Efficient Estimation of Longitudinal Data Additive Varying Coefficient Regression Models

Efficient Estimation of Longitudinal Data Additive Varying Coefficient Regression Models
原文传递
导出
摘要 We consider a longitudinal data additive varying coefficient regression model, in which the coef- ficients of some factors (covariates) are additive functions of other factors, so that the interactions between different factors can be taken into account effectively. By considering within-subject correlation among repeated measurements over time and additive structure, we propose a feasible weighted two-stage local quasi-likelihood estimation. In the first stage, we construct initial estimators of the additive component functions by B-spline se- ries approximation. With the initial estimators, we transform the additive varying coefficients regression model into a varying coefficients regression model and further apply the local weighted quasi-likelihood method to estimate the varying coefficient functions in the second stage. The resulting second stage estimators are com- putationally expedient and intuitively appealing. They also have the advantages of higher asymptotic efficiency than those neglecting the correlation structure, and an oracle property in the sense that the asymptotic property of each additive component is the same as if the other components were known with certainty. Simulation studies are conducted to demonstrate finite sample behaviors of the proposed estimators, and a real data example is given to illustrate the usefulness of the proposed methodology. We consider a longitudinal data additive varying coefficient regression model, in which the coef- ficients of some factors (covariates) are additive functions of other factors, so that the interactions between different factors can be taken into account effectively. By considering within-subject correlation among repeated measurements over time and additive structure, we propose a feasible weighted two-stage local quasi-likelihood estimation. In the first stage, we construct initial estimators of the additive component functions by B-spline se- ries approximation. With the initial estimators, we transform the additive varying coefficients regression model into a varying coefficients regression model and further apply the local weighted quasi-likelihood method to estimate the varying coefficient functions in the second stage. The resulting second stage estimators are com- putationally expedient and intuitively appealing. They also have the advantages of higher asymptotic efficiency than those neglecting the correlation structure, and an oracle property in the sense that the asymptotic property of each additive component is the same as if the other components were known with certainty. Simulation studies are conducted to demonstrate finite sample behaviors of the proposed estimators, and a real data example is given to illustrate the usefulness of the proposed methodology.
作者 Shu LIU
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2017年第2期529-550,共22页 应用数学学报(英文版)
基金 Supported by Shanghai University of Finance and Economics Graduate Innovation and Creativity Funds(No.CXJJ-2013-458)
关键词 additive vary-coefficient model longitudinal data modified Cholesky decomposition withinsubject correlation additive vary-coefficient model longitudinal data modified Cholesky decomposition withinsubject correlation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部