期刊文献+

夜间有雾图像的光照模型构建及去雾 被引量:8

Lighting model construction and haze removal for nighttime image
下载PDF
导出
摘要 夜间有雾图像会出现严重退化,而且人工光源的存在也使得环境光呈现不均匀性。针对上述问题,本文提出了一种适用于夜间有雾图像的光照模型,并在此基础上实现了夜间图像去雾。模型中主要包含了环境光和透射率两个参数,这两个参数都会随着图像局部内容的变化而产生空间变化。首先基于信息损耗约束理论对上述参数进行初始估计,随后利用快速导向滤波对其进行细化,以抑制块效应和光晕效应,最后将细化后的参数代入光照模型中,通过求解模型即可获得最终待还原目标图像。实验结果表明,本文提出的算法能够有效实现夜间有雾图像的去雾处理,在抑制亮区发散的同时能重现暗区的细节,恢复的场景具有较好的亮度和对比度,恢复的图像颜色自然,总体性能优于同类型的其它算法。 Nighttime haze images degrade seriously and artificial light sources cause uneven atmospheric light.Aimed at those problems,this paper introduced a kind of lighting model applicable to nighttime haze image and realizes nighttime image dehazing.The model mainly consisted of two parameters of atmospheric light and transmission,of which space changed with change of local image content.Firstly,the above parameters were initially estimated based on information loss constraint theory and then refinement was carried out by applying fast guide filter to restrain the block effect and halo effect;finally,ultimate refined parameters were applied to lighting model and target image could be obtained by solving the model.Experimental result shows that the proposed algorithm can realize dehazing treatment for nighttime haze image and show again detail of dark space by suppressing emission of light area simultaneously;recovered scene has favorable brightness,contrast ratio and recovered image has natural color.The overall performance of the algorithm is superior to that of other algorithms.
作者 余顺园 朱虹 YU Shun-yuan ZHU Hong(Faculty of Automation and Information Engineering Xitan University of Technology, Xilan 710048, China Faculty of Electronics and Information Engineering, Ankang University, Ankang 710025, China Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xitan 710048, China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2017年第3期729-734,共6页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61673318) 高层次人才科研启动项目(No.2016AYQDZR06)
关键词 夜间图像 图像去雾 光照模型 信息损耗约束 快速导向滤波 nighttime image image dehazing lighting model information loss constraint fast guide filter
  • 相关文献

参考文献5

二级参考文献54

  • 1崔宝侠,贾冬雪,段勇.明亮区域的暗原色先验算法[J].沈阳工业大学学报,2015,37(1):75-79. 被引量:2
  • 2孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 3Fattal R. Single image dehazing [J]. ACM Transactions on Graphics(TOG), 2008, 27(3): 1-9. 被引量:1
  • 4He K, Sun J, Tang X. Single image haze removal using dark channel prior[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2009: 1956-1963. 被引量:1
  • 5He K, Sun J, Tang X. Guided image filtefing[C]//European Conference on Computer Vision(ECCV), 2010: 1-14. 被引量:1
  • 6Tarel J, Hauti N. Fast visibility restoration from a single color or gray level image[C]//IEEE International Conference on Computer Vision (ICCV), 2009: 2201-2208. 被引量:1
  • 7Caraffa L, Tarel J. Markov random field model for single image defogging [C]//Intelligent Vehicles Symposium, 2013: 994-999. 被引量:1
  • 8Tarel J, Hauti N. ,Vision enhancement in homogeneous and heterogeneous fog [J]. IEEE Intelligent Transportation Systems Magazine, 2012, 4(2): 6-20. 被引量:1
  • 9Krishnan D, Fattal R, Szeliski R. Efficient preconditioning of laplacian matrices for computer graphics [J]. ACM Transaction on Graphics, 2013, 32(4): 1-15. 被引量:1
  • 10TAN R T. Visibility in bad weather from a single image[C] . 2008 IEEE Conferece o7l Computer Vision and Patler2 Recognition , Anchorage: IEEE,2008: 1-8. 被引量:1

共引文献68

同被引文献51

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部