摘要
在遥感图像分割中,某些像素分类具有不确定性和随机性,模糊C-均值(FCM)聚类算法对处理这种不确定性和随机性具有很大的优势,但传统的FCM算法具有很大的缺点。对此,该研究提出一种改进的FCM遥感图像分割算法。首先,该算法在选取聚类中心和聚类数时使用直方图进行选取,克服了传统FCM算法选取时的随机性和人为性;然后,使用叉熵距离测度代替欧氏距离测度,克服了传统FCM算法依赖于球状分布的缺点;最后,利用传统FCM算法和改进后的FCM算法对某水电站大坝遥感图像进行分割实验,比较2种方法的分割效果,结果显示,改进的FCM算法大大提高了遥感图像聚类的效率和分类的精度。
出处
《浙江农业科学》
2017年第3期518-520,共3页
Journal of Zhejiang Agricultural Sciences