期刊文献+

基于混合压缩感知的分簇式网络数据收集方法 被引量:13

Data Collection Method in Clustering Network Based on Hybrid Compressive Sensing
下载PDF
导出
摘要 为了减少分簇式传感器网络中的数据传输量并均衡网络负载,提出了一种采用混合压缩感知(compressive sensing,CS)进行数据收集的方法.1)选取各临时簇中距离簇质心最近的一些节点为候选簇头节点,然后依据已确定的簇头节点到未确定的候选簇头节点的距离依次确定簇头;2)各普通节点选择加入距离自己最近的簇中;3)贪婪构建一棵以Sink节点为根节点并连接所有簇头节点的数据传输树,对数据传输量高于门限值的节点使用CS压缩数据传输.仿真结果表明:当压缩比率为10时,数据传输量比Clustering without CS和SPT without CS分别减少了75%和65%,比SPT with Hybrid CS和Clustering with Hybrid CS分别减少了35%和20%;节点数据传输量标准差比Clustering without CS和SPT without CS分别减少了62%和81%,比SPT with Hybrid CS和Clustering with Hybrid CS分别减少了41%和19%. In order to reduce the number of transmissions and balance the network load in wireless sensor network,this paper presents a data collection method by using hybrid compressive sensing(cs)in clustering network.Firstly we choose some nodes that are close to the temporary cluster-centroid as the candidate cluster head(CH),secondly determine the CH nodes on the basis of the distance of the candidate nodes to determined CH orderly.Then the common sensor nodes join their nearest cluster.Lastly we build a data transmission tree root of sink node that connects to all CHs greedy.When the number of data transmissions is higher than the threshold,nodes transmit data by using CS.On scenarios of compressive ratio equals 10,the simulation results demonstrate that the number of transmissions for the proposed method is 75% and 65%less than that of Clustering without CS and SPT without CS,35% and 20% less than that of SPT with Hybrid CS and Clustering with Hybrid CS;The standard deviation of nodes transmissions for the proposed method is 62%and 81%less than that of Clustering without CS and SPT without CS,41%and 19%less than that of SPT with Hybrid CS and Clustering with Hybrid CS.
出处 《计算机研究与发展》 EI CSCD 北大核心 2017年第3期493-501,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61379115 61110215 61372049 61602398) 湖南省自然科学基金项目(2015JJ4047 12JJ9021 13JJ8006) 江苏省无线传感网高技术研究重点实验室开发课题(WSNLBKF201501) 湖南省重点学科建设基金项目~~
关键词 无线传感器网络 压缩感知 数据收集 分簇网络 负载均衡 wireless sensor network(WSN) compressive sensing data collection clustering network load balance
  • 相关文献

参考文献5

二级参考文献189

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306. 被引量:1
  • 3Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263. 被引量:1
  • 4Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592. 被引量:1
  • 5Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509. 被引量:1
  • 6Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425. 被引量:1
  • 7Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20. 被引量:1
  • 8Candes E J,Tao T.Decoding by linear programming.IEEE Transactions on Information Theory,2005,51(3):4203-4215. 被引量:1
  • 9Cand,et al.Sparsity and incoherence in compressive sampiing.Inverse Problems,2007,23(3):969-985. 被引量:1
  • 10Candes E,Tao T.The dantzig selector:Statistical estimation when P is much larger than n.Annals of Statistics,2007,35(6):2313-2351. 被引量:1

共引文献572

同被引文献103

引证文献13

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部