期刊文献+

基于互补不变特征的倾斜影像高精度立体匹配

High Precision Stereo Matching of Oblique Image Based on Complementary Invariant Features
下载PDF
导出
摘要 针对常规算法在倾斜立体影像匹配时的不足,本文提出了一种基于互补不变特征的高精度均匀匹配算法,其可实现特征匹配数量较多、空间分布均匀度较好、匹配点定位精度较高的影像匹配。首先融合Harris-Affine(仿射不变的Harris角点)和SIFT(Scale Invariant Feature Transform)互补不变特征,然后利用得到的单应矩阵对影像进行射影变换并消除影像失真,最后提取Harris特征进行双重约束归一化互相关(Normalized Cross Correlation,NCC)匹配。利用近景影像、无人机影像和AMC580影像进行的实验结果表明,本文所提算法是一种适用于倾斜影像的鲁棒匹配算法。 Since the conventional algorithm for stereo image matching of oblique images has many drawbacks, a high preci- sion and well-proportioned matching algorithm based on complementary invariant features is designed to realize image matching with more feature matching, better spatial distribution uniformity and higher positioning accuracy. Firstly, the complementary in- variant features of Harris-Affine and SIFT are combined to get the homography matrix, which are then used to carry out the projec- tive transformation of the image and eliminate image distortion. At Last, Harris features are extracted for hybrid constraints Nor- malized Cross Correlation matching. In order to verify the effectiveness of the proposed algorithm, experiments are carried out u- sing close-range image, UAV image and AMC580 image. The results show that it is a robust matching algorithm and can be ap- plied to oblique image.
出处 《测绘科学与工程》 2017年第1期40-44,71,共6页 Geomatics Science and Engineering
基金 基金项目:国家自然科学基金资助项目(52110295,61271421).
关键词 倾斜影像 互补不变特征 双重约束NCC匹配 随机采样一致性 oblique stereo image complementary invariant feature hybrid constraints NCC matching random sample consensus
  • 相关文献

参考文献1

二级参考文献19

  • 1韦燕凤,赵忠明,闫冬梅,曾庆业.基于特征的遥感图像自动配准算法[J].电子学报,2005,33(1):161-165. 被引量:27
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 3BROWN L. A Survey of Image Registration Techniques [J]. ACM Computing Surveys, 1992, 24(4): 325-376. 被引量:1
  • 4ZITOVA B, FLUSSER J. Image Registration Methods: a Survey[J]. Image and Vision Computing, 2003, 21 ( 11 ), 977-1000. 被引量:1
  • 5HONG G, ZHANG Y. Wavelet-based Image Registration Technique {or High resolution Remote Sensing Images[J]. Computer & Geosciences, 2008, 34: 1708-1720. 被引量:1
  • 6YU L, ZHANG D R, HOLDEN E J. A Fast and Fully Automatic Registration Approach Based on Point Features for Multi-source Remote-sensing Images[J]. Computer Geosciences, 2008, 34: 838-848. 被引量:1
  • 7KIM Y S, LEE J H, RA J B. Multi-sensor Image Registration Based on Intensity and Edge Orientation Information[J].Pattern Recognition, 2008, 41: 3356-3365. 被引量:1
  • 8LI H, MANJUNATH B S, MITRA S K. A Contour- based Approach to Multisensor Image Registration [J]. IEEE Transactions on Image Processing, 1995, 4 (3): 320- 334. 被引量:1
  • 9LOWE D. Distinctive Image Features from Scale invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 10MIKOLAJCZYK K, TUYTELAARS T, SCHMID C. A Comparison of Affine Region Detectors[J]. International Journal of Computer Vision, 2005, 65 (1) : 43-72. 被引量:1

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部