期刊文献+

失谐连续双跨梁结构振动特性的理论和实验研究 被引量:3

Theoretical and experimental studies on the vibration characteristics of disordered two-span beams
下载PDF
导出
摘要 基于Euler-Bernoulli梁理论建立了双跨梁结构的动力学模型,采用模态分析方法求解动力学方程,根据边界条件获得双跨梁的频率方程,由此求解出双跨梁的固有频率,以此为基础进一步得到结构各点的时间响应历程曲线。针对双跨梁的两跨长度不等长造成的结构尺寸失谐,分析了不同跨长比对结构振动特性的影响,将理论计算结果与有限元仿真和实验结果进行比较,得到了较好的吻合。研究结果对于工程领域中失谐双跨梁结构的动力学分析和设计具有一定的参考价值。 Based on the Euler-Bernoullibeam theory,the dynamical model of the disordered two-span beam is established.The dynamical equation is solved by using the modal superposition method,and the frequency equation of the two-span beam is obtained according to the boundary conditions.From the frequency equation,the natural frequencies of the two-span beam are solved,and the time-history response curves of the two-span beam are further obtained.Considering the structural size disorder resulted from the two different span lengths of the two-span beam,we analyzed the influences of the different span length ratios on the vibration characteristics of the structure.By comparing the results from theoretical calculation with those from the commercial software Ansys and experiments,good agreement is obtained.The research results of this paper can be of great important on the dynamical analysis and design of disordered two-span beams in practical engineering fields.
出处 《振动工程学报》 EI CSCD 北大核心 2017年第1期149-154,共6页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(11172084 11572007)
关键词 双跨梁 失谐 振动特性 实验研究 two-span beam disorder vibration characteristics experimental investigations
  • 相关文献

参考文献3

二级参考文献46

  • 1胡超,陈涛,黄文虎.基于行波与模态的混合方法对Timoshenko梁进行振动主动控制[J].航空学报,2007,28(2):301-308. 被引量:7
  • 2黄文虎,王心清,张景绘,郑钢铁.航天柔性结构振动控制的若干新进展[J].力学进展,1997,27(1):5-18. 被引量:140
  • 3Olsson M.On The Fundamental Moving Load Problem[J].J of Sound and Vibration,1991,145(2):299~307. 被引量:1
  • 4Lee U.Revisiting the moving mass problem:Oneset of separation between the mass and beam[J].J of Vibration and Acoustics,1996,118(7):516~521. 被引量:1
  • 5Michaltsos G T,Sophianopoulos D,Kounadis A N.The effect of a moving mass and other parameters on the dynamic response of a simply supported beam[J].J of Sound and Vibration,1996,191:357~362. 被引量:1
  • 6Pesterev A V,Bergman L A.Response of a nonconservative continuous system to a moving concentrated load[J].J of Applied Mechanics 1998,65 (6):436~444. 被引量:1
  • 7Pesterev A V,Bergman L A.An Improved Series Expansion of the Solution to the Moving Oscillator Problem[J].J.of Vibration and Acoustics,2000,122(6):54~61. 被引量:1
  • 8Visweswara Rao G.Linear dynamics of an elastic beam under moving load[J].J.of Vibration and Acoustics,2000,122(7):281~289. 被引量:1
  • 9Michaltsos G T,Kounadis A N.The effects of centripetal and coriolis forces on the dynamic response of light bridges under moving loads[J].J.of Vibration and Control,2001,(7):315~326. 被引量:1
  • 10Michaltsos G T.Dynamic behavior of a single-span beam subjected to loads moving with variable speeds[J].J.of Sound and Vibration,2002,258(2):359~372. 被引量:1

共引文献47

同被引文献33

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部