期刊文献+

导弹系统的复合分层抗干扰自动驾驶仪设计 被引量:3

Composite Hierarchical Anti-disturbance Autopilot Design for Missile Systems
下载PDF
导出
摘要 考虑了带有多干扰的导弹系统的自动驾驶仪设计问题。结合滑模控制方法、自适应控制策略和非线性干扰观测器技术,给出了导弹系统的复合分层抗干扰控制自动驾驶仪。首先,根据外部干扰的特性不同,分别可以来把干扰建模为部分信息已知的谐波干扰和有界干扰。其次,设计了非线性干扰观测器估计了部分信息已知的谐波干扰,并分析了干扰估计误差系统的稳定性。再次,为了衰减和抑制有界干扰和干扰估计误差,利用滑模控制方法设计了反馈控制律,保证了闭环系统有良好的性能。然而,此策略需要知道有界干扰的上界。再次给出了一种自适应滑模控制方法,其中,有界干扰的上界通过自适应控制技术得到。最后,利用仿真验证了所提方法的有效性和优越性。 In this paper, the problem of autopilot design for missile systems with multiple disturbances is considered. Combining the sliding mode control method, adaptive control scheme, and nonlinear disturbance observer technique, a composite hierarchical anti-disturbance control (CHADC) autopilot is presented. First, according to the different properties of external disturbances, the disturbances are modelled as harmonic disturbances with partial known information and bounded disturbances, respectively. Second, a nonlinear disturbance observer is designed to estimate harmonic disturbances, and the stability of the disturbance estimation error system is analyzed. Third, in order to attenuate and reject bounded disturbances and the disturbance estimation error, a sliding mode control scheme is employed to design feedback control law, which can guarantee the closed-loop system have good performance. However, the scheme needs the upper bounded of the bounded disturbances. Fourth, an adaptive sliding mode control method is given, where the upper bounded of disturbances is obtained by the adaptive control technique. Finally, the effectiveness and superiority of the proposed method is validated by simulation.
出处 《控制工程》 CSCD 北大核心 2017年第3期500-504,共5页 Control Engineering of China
基金 国家自然科学基金资助项目(61203064)
关键词 导弹系统 多干扰 干扰观测器 滑模控制 自适应控制 Missile system multiple disturbance disturbance observer sliding mode control adaptive control
  • 相关文献

参考文献3

二级参考文献60

  • 1刘强,尔联洁,刘金琨.参数不确定机械伺服系统的鲁棒非线性摩擦补偿控制[J].自动化学报,2003,29(4):628-632. 被引量:26
  • 2Lizarralde F, Wen JT.Attitude control without angular velocity measurement: a passivity approach.IEEE Trans Autom Control 1996;41(3):468-72. 被引量:1
  • 3Zou AM, Kumar KD.Adaptive attitude control of spacecraft without velocity measurements using Chebyshev neural network.Acta Astronaut 2010;66(5-6):769-79. 被引量:1
  • 4Yoon H, Agrawal BN.Adaptive control of uncertain Hamiltonian multi-input multi-output systems: with application to spacecraft control.IEEE Trans Control Syst TechnoI2009;17(4):900-6. 被引量:1
  • 5Liu YC, Zhang T, Song JY, Liang B.Adaptive spacecraft attitude tracking controller designed based on similar skew-symmetric structure.Chin J Aeronaut 2010;23(2):227-34. 被引量:1
  • 6Yang CC, Wu CJ.Optimal large-angle attitude control of rigid spacecraft by momentum transfer.lET Control Theory Appl 2007;1(3):657-64. 被引量:1
  • 7Park Y.Robust and optimal attitude stabilization of spacecraft with external disturbances.Aerosp Sci TechnoI2005;9(3):253-9. 被引量:1
  • 8Forbes JR, Damaren CJ.Geometric approach to spacecraft attitude control using magnetic and mechanical actuation.J Guidance Control Dyn 2010;33(2):590-5. 被引量:1
  • 9Fragopoulos 0, Innocenti M.Stability considerations in quater?nion attitude control using discontinuous Lyapunov functions.lEE Proc: Control Theory Appl 2004;151(3):253-8. 被引量:1
  • 10Thienel J, Sanner RM.A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise.IEEE Trans Autom Control 2003;48(11):2011-5. 被引量:1

共引文献24

同被引文献24

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部