期刊文献+

划痕图像的连分式插值修补算法 被引量:3

Inpainting algorithm by continued fraction interpolation for scratching images
原文传递
导出
摘要 目的图像修复在图像处理中起着举足轻重的地位,针对目前大部分图像修补算法在修复划痕时存在纹理修复不够突出的缺陷,提出了两种基于连分式插值的修补算法,可以较好保持图像纹理的特性。方法该算法基于连分式插值理论,采用图像破损点周围像素信息来插值出破损点的像素值。根据插值函数和插值窗口的不同,提出了两种插值方法,即Thiele型修补算法与Newton-Thiele型修补算法,解决不同纹理类型图像的划痕修补问题,并对插值过程中出现的奇异点问题和平移问题提出了行之有效的解决办法。结果对大量的划痕图像进行实验测试,并通过主观评价和客观评价进行评估。客观评价包括峰值信噪比(PSNR)和运行时间的比较。相对于目前流行的一些修补方法来说,本文算法有更好的视觉效果,更高的峰值信噪比和更短的运行时间,峰值信噪比为44.79 d B,运行时间为0.53 s。结论 Thiele型修补算法更加擅长处理纹理垂直于划痕的图像,而Newton-Thiele型修补算法适用于复杂纹理的图像。 Objective Image inpainting is crucial for image processing. However, image inpainting methods produce restored images with unsatisfactory textures. Therefore, to effectively maintain image textures, we propose two image inpainting algorithms based on continued fraction interpolation.Methods The proposed algorithms are based on continued fraction interpolation. The intensity of a damaged point is interpolated from the information of the surrounding pixel points. The two proposed interpolation methods are based on different interpolation functions and interpolation windows to repair different types of scratching texture images:the inpainting algorithm based, which is based on Thiele interpolation, and the inpainting algorithm, which is based on Newton-Thiele interpolation. Moreover, we propose the solutions to singular point and translation problems in interpolation.Results To demonstrate the superiority of the proposed algorithms, several experiments were conducted with scratching images. Subjective and objective evaluations were employed. The objective evaluation compared the peak signal-to-noise ratio (PSNR) and running time among algorithms. The experimental results showed that the proposed algorithms exhibited better visual effect, higher PSNR, and shorter running time than those of current popular inpainting algorithms. The PSNR of the proposed algorithm was 44.79 dB, and its running time was 0.53 s.Conclusion The proposed inpainting algorithm, which is based on Thiele interpolation, is more suitable for scratching images with perpendicular textures. By contrast, the inpainting algorithm, which is based on Newton-Thiele interpolation, is more appropriate for complex texture images.
出处 《中国图象图形学报》 CSCD 北大核心 2017年第3期376-384,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(61070227 61472466 61502141 61672202) 安徽省自然科学基金项目(1508085QF128) 中央高校基本科研业务费专项基金项目(JZ2015HGXJ0175 JZ2016HGBZ1005)~~
关键词 图像修补 划痕 连分式 插值 Newton—Thiele Thiele image inpainting scratch continued fractions interpolation Newton-Thiele Thiele
  • 相关文献

参考文献13

二级参考文献172

  • 1屈磊,韦穗,梁栋,王年.快速自适应模板图像修复算法[J].中国图象图形学报,2008,13(1):24-28. 被引量:13
  • 2王树根,郑精灵.基于纹理匹配的影像缺损信息填充方法[J].测绘通报,2004(12):21-23. 被引量:11
  • 3彭宏京,侯文秀,宫宁生.改进的基于样例修补的目标移除方法[J].计算机辅助设计与图形学学报,2006,18(9):1345-1349. 被引量:13
  • 4Drori I, Cohen-Or D, Yeshurun H. Fragment-based image completion[ C ]//Proceedings of ACM SIGGRAPH. New York, USA: ACM, 2003 : 303-312. 被引量:1
  • 5Criminisi A, Perez P, Toyama K. Object removal by exemplar- based inpainting [ C ]//Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison: Wisconsin, 2003:721-728. 被引量:1
  • 6Andrei R, Marcel J T, Jan B. Edge-based image restoration [ J]. IEEE Transactions on Image Processing, 2005, 14 (10) : 1454-1468. 被引量:1
  • 7Sun J, Yuan L, Jia J Y, et al. Image completion with structure propagation [ C ]//Proceedings of ACM SIGGRAPH. New York, USA: ACM, 2035, 24 (3) : 861-868. 被引量:1
  • 8Shen M F, Li B. Structure and texture image iupainting based on region segmentation [ C ]// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Hawaii, USA : Honolulu, 2007: 701 -704. 被引量:1
  • 9Wang M Q, Han G Q, Tu Y Q. Edge-based image completing guided by region segmentation [ C ]// Proceedings of ISECS International Colloquium Computing, Communication,Control, and Management. Guangzhou, China: IEEE, 2008 : 152-156. 被引量:1
  • 10Wong A, Orchard J. A nonlocal-means approach to exemplar- based inpainting [ C ]// Proceedings of 2008 the 15th IEEE International Conference on Image Processing. San Diego, CA, USA: IEEE, 2008: 2600-2603. 被引量:1

共引文献267

同被引文献24

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部