摘要
Parkinson's disease (PD) is a common neurodegenerative disorder affecting millions of people worldwide, but its cause and pathogenesis are still not fully understood. Earlier studies have shown that SNCA, which encodes α-synuclein, is one of the key genes associated with PD. Single-nucleotide polymorphism (SNP) variants of SNCA are thought to be correlated with disease onset. The underlying mechanisms however are enigmatic. A recent study published in Nature revealed that one of the SNP variants in the SNCA non-coding element elevated α- synuclein expression in human neurons by reducing the binding efficiency of transcription factors, demonstrating a previously uncharted role for SNPs in the pathogenesis of PD.
Parkinson's disease (PD) is a common neurodegenerative disorder affecting millions of people worldwide, but its cause and pathogenesis are still not fully understood. Earlier studies have shown that SNCA, which encodes α-synuclein, is one of the key genes associated with PD. Single-nucleotide polymorphism (SNP) variants of SNCA are thought to be correlated with disease onset. The underlying mechanisms however are enigmatic. A recent study published in Nature revealed that one of the SNP variants in the SNCA non-coding element elevated α- synuclein expression in human neurons by reducing the binding efficiency of transcription factors, demonstrating a previously uncharted role for SNPs in the pathogenesis of PD.