期刊文献+

5A06铝合金TIG丝材-电弧增材制造工艺 被引量:35

TIG Wire and Arc Additive Manufacturing of 5A06 Aluminum Alloy
下载PDF
导出
摘要 选用Φ1.2mm的5A06铝焊丝为成形材料,研究TIG丝材-电弧增材制造工艺。以TIG焊机为电源(交流模式),以四轴联动数控机床为运动机构,研究单层和多层成形时预热温度和电流对成形形貌的影响,观察成形件微观组织,并测试其力学性能。建立了单层单道基板预热温度和电弧峰值电流工艺规范带判据,以保证良好成形。结果表明:成形件的高度从第一层的3.4mm急剧下降,直到第8层后高度稳定在1.7mm。层间组织为细小的树枝晶和等轴晶;层间结合处组织最粗大,为柱状树枝晶;顶部组织最细小,由细小的树枝晶转变为等轴晶。成形件的力学性能各向同性,抗拉强度为295MPa,伸长率为36%。 Wire and arc additive manufacturing(WAAM)was investigated by tungsten inert gas arc welding method(TIG),in which Φ1.2mm filler wire of aluminum alloy 5A06(Al-6Mg-Mn-Si)was selected as deposition metal.The prototyping process was conducted by a TIG power source(working in AC mode)manipulated by a four-axis linkage CNC machine.Backplate preheating temperature and arc current on deposited morphologies of single layer and multi-layer were researched.The microstructure was observed and the sample tensile strength was tested.For single layer,a criterion that describes the correlation between backplate preheating temperature and arc peak current,of which both contribute to the smoothening of the deposited layer.The results show that the layer height drops sharply from the first layer of 3.4mm and keeps at 1.7mm after the 8th layer.Fine dendrite grain and equiaxed grain are found inside a layer and coarsest columnar dendrite structure at layer boundary zone;whereas the microstructure of top region of the deposited sample changes from fine dendrite grain to equiaxed grain that turns to be the finest structure.Mechanical property of the deposited sample is isotropic,in which the tensile strength is approximately 295 MPa with the elongation around36%.
出处 《材料工程》 EI CAS CSCD 北大核心 2017年第3期66-72,共7页 Journal of Materials Engineering
基金 国家自然科学基金资助项目(51475376) 西北工业大学凝固技术国家重点实验室自主研究课题资助项目(109-QP-2014)
关键词 TIG 丝材-电弧增材制造 5A06铝合金 成形 微观组织 力学性能 TIG WAAM 5A06 aluminum alloy prototyping microstructure mechanical property
  • 相关文献

参考文献6

二级参考文献41

  • 1邹金文,汪武祥.粉末高温合金研究进展与应用[J].航空材料学报,2006,26(3):244-250. 被引量:111
  • 2田世藩,张国庆,李周,颜鸣皋.先进航空发动机涡轮盘合金及涡轮盘制造[J].航空材料学报,2003,23(z1):233-238. 被引量:49
  • 3EVANS N D, MAZIASZ P J, SHINGLEDECKER J P, et al. Mierostructure evolution of alloy 625 foil and sheet during creep at 750℃ [J]. Materials Science and Engineering A, 2008, 498 (1-2) : 412-420. 被引量:1
  • 4RODR1GUEZ R, HAYES R W, BERBON P B, et al. Tensile and creep behavior of cryomilled lnco 625[J]. Acta Materialia, 2003, 51(4): 911--929. 被引量:1
  • 5MATHEW M D, RAO K B S, MANNAN S L. Creep properties of service-exposed Alloy 625 after re solution annealing treatment [J]. Materials Science and Engineering A, 2004, 372 (1 -- 2) : 327--333. 被引量:1
  • 6THERIAULT A, XUE L, DRYDEN J R. Fatigue behavior of la ser consolidated IN-625 at room and elevated temperatures [J]. Materials Science and Engineering A, 2009, 516 ( 1 -- 2) : 217 -- 225. 被引量:1
  • 7SHANKAR V, RAO K B S, MANNAN S L. Microstructure and mechanical properties of Inconel 625 superalloy[J]. Journal of Nuclear Materials, 2001, 288(2 3): 222-232. 被引量:1
  • 8GANESH P, KAUL R, PAUL C P, et al. Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures[J]. Materials Science and Engineering A, 2010, 527(29--30): 7490--7497. 被引量:1
  • 9RAI S K, KUMAR A, SHANKAR V, et al. Characterization of microstructures in Inconel 625 using X-ray diffraction peak broad- ening and lattice parameter measurements[J]. Scripta Materialia, 2004, 51(1): 59--63. 被引量:1
  • 10SONG K H, NAKATA K. Effect of precipitation on post-heat- treated Inconel 625 alloy after friction stir welding [J]. Materials and Design, 2010, 31(6): 2942--2947. 被引量:1

共引文献20

同被引文献250

引证文献35

二级引证文献280

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部