期刊文献+

折叠微通道铝扁管极限承压有限元仿真 被引量:3

Finite element analysis of ultimate pressure-bearing capacity for aluminum micro-channel folded tube
下载PDF
导出
摘要 微通道扁管是平行流换热器的核心部件,极限承压能力是其最重要的性能指标之一。基于ABAQUS有限元软件,采用显式动力算法,结合GTN材料损伤模型,建立了折叠微通道铝扁管压爆试验的有限元分析模型,用于分析和预测折叠扁管的承压能力。通过与实际压爆试验对比,仿真计算得到的极限承压值和残余鼓包凸度与实测误差在5%以内,验证了有限元仿真模型的正确性。利用经过验证的有限元模型,分析了不同孔数、辊弯角减薄量和辊弯角度对折叠扁管的极限承压值影响,结果表明:增多孔数、减小辊弯角减薄量和辊弯角度均有利于提高折叠管极限承压值,其中扁管的孔数对极限承压值影响最大。 As the core component of parallel flow heat exchangers,the ultimate pressure bearing capacity is one of the most important performance indexes of the micro-channel flat tube. Combining with GTN damage model,the FEA models of bursting test for micro-channel folded tube were employed to analyze and predict the pressure bearing capacity of folded tube based on ABAQUS. Comparing with the bursting test results,the errors of ultimate pressure bearing value and the residual convex degree between simulation and actual test are under 5%,which verifies the correctness of the FEA models. Finally,the effects of number of holes,limiting thickness reduction of bending angle and value of bending angle on ultimate pressure bearing value were studied by using the FEA model. The simulation results show that increasing the number of holes,limiting thickness reduction of bending angle and decreasing the value of bending angle are contributed to enhancing the ultimate pressure bearing value of folded tube,among which the number of holes has the most impact.
出处 《塑性工程学报》 CAS CSCD 北大核心 2017年第1期152-159,共8页 Journal of Plasticity Engineering
基金 国家科技支撑计划(2012BAF01B06)
关键词 折叠微通道扁管 GTN模型 极限承压值 压爆试验 micro-channel folded tube GTN damage model ultimate pressure-carrying value bursting test
  • 相关文献

参考文献6

二级参考文献46

  • 1包涛,陈蕴光,董玉军,袁秀玲,董晓俊.多元平行流冷凝器传热流动性能研究[J].制冷学报,2005,26(3):1-5. 被引量:27
  • 2张兴群,袁秀玲,黄东.平行流式冷凝器的热力性能研究[J].流体机械,2005,33(12):65-68. 被引量:23
  • 3周子成.微通道换热器及其应用实例[C].第九届全国小型制冷机学术交流会论文集,广州,2008. 被引量:4
  • 4Tuckerman D B,Pease RF VW.High-performanceheat Sinking for VLSI[J].IEEE Electronic Device Let-ters,1981,2(5):126-129. 被引量:1
  • 5Sugihara A,Lukas H G.Performance of parallel flowcondensers in vehicular applications[J].SAE TechnicalPaper Series 900597,1990,1-16. 被引量:1
  • 6Min Y J,Hrnjak P S,Bullard C W.R744 gas coolermodel development and validation[J].Int J Refriger-ant,2001,24:692-701. 被引量:1
  • 7Chung K,Lee K S,Kim W S.Optimization of the designfactors for thermal performance of a parallel flow heatexchanger[J].Int J of Heat and Mass Transfer,2002,45:4773-4780. 被引量:1
  • 8Liao S M,Zhao T S.Measurements of heat transfer coef-ficients from supercritical carbon dioxide flow in horizon-tal min/micro channels[J].Journal of Heat Transfer,2002,124:413-420. 被引量:1
  • 9Chang Yong Park,Pega Hmjak.Experimental and numer-ical study on microchannel and round-tube condensersin a R410A residential air-conditioning system[J].In-ternational journal of refrigeration,2008,31:822-831. 被引量:1
  • 10Kim M H,Bullard C W.Performance evaluation of awindow room air conditioner with microchannel condens-ers[J].Journal of Energy Resources Technology,Transactions of the ASME.,2002,124(l):47-55. 被引量:1

共引文献39

同被引文献7

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部