期刊文献+

具有季节性自然演替及脉冲扰动的单种群模型

A Single Species Model with Seasonal Succession and Impulsive Perturbations
下载PDF
导出
摘要 考虑一类具有季节性自然演替和周期性脉冲扰动的单种群模型,研究脉冲扰动对种群动力学行为的影响.通过建立频闪映射,得到种群持久和灭绝的阈值条件,并结合有理差分方程理论证明系统有唯一稳定的正周期解,用Matlab软件进行模拟并与连续系统作对比,数值模拟清晰地展示了脉冲扰动对季节性系统的影响. In this paper,we consider a class of single species with seasonal succession and impulsive perturbations and study the effects of pulse disturbance on population dynamics behaviors. By establishing the stroboscopic map,we get the threshold value for the permanence and extinction of population. Combining the theory of rational difference equation,we obtain that the system has a unique globally stable positive periodic solution. The numerical simulation is taken by using mathematical software-Matlab. It clearly shows the influence of pulse disturbance to the seasonal system. We compare these results with continuous system.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2017年第1期84-89,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11361059和11271312) 新疆维吾尔自治区自然科学基金(2014721014)
关键词 季节演替 脉冲 持久 灭绝 周期解 seasonal succession impulsive permanence extinction periodic solution
  • 相关文献

参考文献2

二级参考文献33

  • 1Mun:ay J D. Mathematical Biology[ M ]. New York : Springer - Verlag, 1989. 被引量:1
  • 2Mathematical Ecological Model and the Research Methods[ M]. Beijing:Scientific Press, 1988. 被引量:1
  • 3Meng X Z, Wei J J. Stahility and bifurcation of mutual system with time delay[J]. Chaos,Sohtons and Frateal,2001,21:729-740. 被引量:1
  • 4Gaines R E, Mawhin J L. Coincidence Degree and Noltlinear Differential Equations [ M ]. Berlin:Springer- Verlag, 1997. 被引量:1
  • 5Lin G J, Hong Y G. Nonlinear Analysis : Real World Applications,2009,10 : 1589 - 1600. 被引量:1
  • 6Zhang Z Q, Tian T S. Multiple periodic solutions for a generalized predatoe prey system with exploited terms [ J ]. Nonlinear Anal- ysis : Real World Applications, 2008,9 : 26 - 39. 被引量:1
  • 7Fan G H, H Y K. Existence of positive periodic solutions for a periodic logistic equation [ J]. Appl Math Comput ,2003,139:311 -321. 被引量:1
  • 8Hu H X, Teng Z D, Jiang H J. On the permanence in non - autonomous Lotka - Volterra competitive system with pure - delays and feedback controls [ J ]. Nonlinear Analysis : Real World Applications, 2009,10 ( 3 ) : 1803 - 1815. 被引量:1
  • 9Fan G H, Li Y K. Existence and stability of periodic solution of a Lotka - Volterra predator - prey model with state dependent im- pulsive effects[J]. J Comput Appl Math,2009,15(2) :544 -555. 被引量:1
  • 10Zhang Z Q, Wang Z C. Periodic solution for a nonautonomous predator prey system with diffusion and time delay[ J]. Hiroshima Mathematical Journal ,2001,31:371 - 381. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部