摘要
在一维空间中研究一类带阻尼Rosenau方程的Cauchy问题,首先用压缩映射原理得到局部解的存在性和唯一性,讨论整体解的存在性,最后用凸性原理得到解的爆破.
This paper considers the well-posedness of solution for the Cauchy problem of the generalized damped Rosenau equation in R. Frist,we prove the existence and uniqueness of the local solution for the problem by the contraction mapping principle. Then the existence of the global solution of the problem is proved. Finally,we study the blow-up of the solution for the problem by the concavity method.
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2017年第1期38-44,共7页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(11571063)