摘要
给出连通的rectifiable空间是局部序列连通(或局部连通)的刻画,推广了拓扑群中的相应结果;利用rectifiable空间G中e的局部邻域基给出G是局部连通(或局部序列连通)的刻画;证明了若A是rectifiable空间G中的序列开子集,那么H=A是G的序列开rectifiable子空间.
In this paper, some characterizations of a locally (sequentially) connected rectifiable space G are given under the condition that G is connected, which improves the corresponding result in topological groups; some characterizations of a locally (sequentially) connected rectifiable space G are given from the point of the local neighborhood base of the element e in G. It is also proved that if A is a sequentially open subset of a rectifiable space G, then H- (A) is a sequentially open rectifiable subspace of G.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2017年第1期87-92,共6页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
国家自然科学基金(11571175
11571158)
福建省自然科学基金(2016J05014)
2015年福建省中青年教师教育科研项目(JA15297)
闽南师范大学杰出青年科研人才培育计划(MJ14001)
山东省自然科学基金(ZR2014AL002)