期刊文献+

改进的压缩感知测量矩阵优化方法 被引量:6

Improved Optimization Algorithm for Measurement Matrix in Compressed Sensing
下载PDF
导出
摘要 压缩感知理论中,测量矩阵优化是一类通过减小测量矩阵与稀疏字典的互相关性来改善测量矩阵性能的方法。本文提出一种能够同时降低整体相关系数和最大值相关系数的测量矩阵优化算法,该算法分为两步:一是通过平均化Gram矩阵特征值来降低测量矩阵的整体相关系数;二是利用阈值函数收缩Gram矩阵非对角线上较大值。两个步骤交替执行,直到解出符合优化要求的测量矩阵。该算法在保证整体相关系数降到最低的同时,又使最大值相关系数显著降低。实验结果表明,与现有算法进行对比,本文方法在降低相关系数和重构成功率上都有一定优势。 In compressed sensing theory,the measurement matrix optimization is a kind of approach of improving performance by decreasing the mutual coherence between the measurement matrix and sparse dictionary. This paper presents a measurement matrix optimization algorithm,which can decrease the global coherent coefficient and the maximum coherent coefficient at the same time. This algorithm is divided into two steps. First,average the eigenvalues of the Gram matrix to decrease the global coherent coefficient. Second,use threshold function to shrink the off-diagonal elements of the Gram matrix. Two steps are alternately performed until the measurement matrix which meets the requirement of the optimal solution is worked out. This algorithm ensures that the global coherent coefficient is reduced to the minimum while the maximum coherent coefficient is significant reduced. Experimental results show that this proposed algorithm is better than the existing algorithms in deceasing coherent coefficient and the success rate of reconstruction.
出处 《信号处理》 CSCD 北大核心 2017年第2期192-197,共6页 Journal of Signal Processing
关键词 压缩感知 测量矩阵优化 GRAM矩阵 相关系数 compressed sensing measurement matrix optimization Gram matrix coherent coefficients
  • 相关文献

参考文献6

二级参考文献118

  • 1D. Donoho, Compressed sensing [ J]. IEEE Transactions on Information Theory,2006,52(4) :1289-1306. 被引量:1
  • 2E. Candes, J. Romberg, T. Tao, Robust uncertainty prin- ciples: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Infor- mation Theory ,2006,52 ( 2 ) :489-509. 被引量:1
  • 3J. Romberg, Imaging via compressive sampling [ J ]. IEEE signal processing magazine 2008,3. 被引量:1
  • 4W. Bajwa, J. Haupt, A Sayeed and R Nowak. Joint source channel communication for distributed estimation in sensor networks [ J]. IEEE Transactions on signal pro- cessing,2007,53 (10) :3629-3653. 被引量:1
  • 5D. Donoho and Y. Tsaig. Extensions of compressed sens- ing [ J ]. Signal Processing,2006.7,86 ( 3 ) :533-548. 被引量:1
  • 6E Cand~s. Compressive sampling [ J]. Int. Congress of Mathematic, Madrid, Spain,2006,3 : 1433-1452. 被引量:1
  • 7W. Bajwa, J. Haupt, G. Raz, S. Wright, and R. Nowak. Toeplitz-structured compressed sensing matrices [ J ]. IEEE Workshop on Statistical Signal Processing (SSP), Madison, Wisconsin, 2007.8,294-298. 被引量:1
  • 8R. DeVore. Deterministic constructions of compressed sensing matrices [ J ]. Journal of Complexity,2007,23 (4- 6) :918-925. 被引量:1
  • 9Ruizhen Zhao, Hao Li, Zhou Qin, Shaohai Hu, A new construction method for generalized Hadamard matrix in compressive sensing [ C ]. 2011 Cross-Strait Conference on Information Science and Technology, Taiwan, Dan- shui, Dec ,8-9,2011,309-313. 被引量:1
  • 10Hao Li, Ruizhen Zhao, Shaohai Hu. The generalized ro- tation matrix: a new measurement matrix for compressive sensing [ C ]. Proceedings of 2011 World Congress on En- gineering and Technology, Oct. 28-Nov. 2,2011, Vol. 7, 743-746. 被引量:1

共引文献79

同被引文献27

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部