期刊文献+

混合动力公交车驾驶员驾驶特性辨识算法 被引量:1

Identification Algorithm of Driving Behavior for Hybrid Bus Driver
下载PDF
导出
摘要 针对混合动力公交车驾驶员驾驶特性与标准控制参数不匹配而导致车辆续驶里程降低的问题,研究同一道路工况下的驾驶员驾驶行为特征参数描述方法以及驾驶员驾驶特性辨识算法。通过提取时域场中与能耗相关的特征变量,构建基于高斯混合模型(GMM)算法的驾驶员驾驶特性辨识模型。结果表明:踏板开度的倒频谱信号比时域信号更能反映驾驶员的驾驶倾向;基于特征变量的时频域信号,并结合线路运行特征优化模型参数,最终模型辨识精度高于93%。 Considering the mismatch between driving behavior of hybrid bus driver and standard control parameter reduces driving range, the paper studies the description method of driving behavior characteristic parameter and identification algo- rithm of driving behavior in the same road condition. It establishes an identification model of driving behavior based on GMM (Gaussian mixture model) by extracting characteristic variable related to energy consumption in time domain. The re- sult shows that the cepstrum signal of pedal can reflect drivers' driving tendency rather than time domain signal, and the precision of the model can reach 93% by optimizing the model parameter according to the running characteristics based on time-frequency domain signal of characteristic variable.
出处 《军事交通学院学报》 2017年第2期44-47,共4页 Journal of Military Transportation University
基金 国家自然科学基金资助项目(51307119) 天津市局级预研项目(KRKC011503)
关键词 混合动力公交车 驾驶特征 高斯混合模型 驾驶员辨识 lbrid bus driving behavior GMM (gaussian mixture model) driver identification
  • 相关文献

参考文献2

二级参考文献10

  • 1ICHIKAWA S, YOKOI Y, DOKI S, et al. Novel energy management system for hybrid electric vehicles utilizing car navigation over a commuting route[J]. IEEE, 2004(6): 161-166. 被引量:1
  • 2ANDERSON C, PETTIT E. The effects of APU characteristics on the design of hybrid control strategies for hybrid electric vehicles[R]. SAE 950957, 1995. 被引量:1
  • 3JOHNSON V H, WIPKE K B, RAUSEN D J. HEV control strategy for real-time optimization of fuel economy and emissions[R]. SAE 2000-01-1543, 2000. 被引量:1
  • 4NASHAL J, NAIM A, KHEIR M S, et al. A rule based energy management strategy for a series hybrid vehicle[C/CD]//Proc, of American Control Conference, 1997: 689-693. 被引量:1
  • 5PEREZ L V, BOSSIO G R, MOITRE D, et al. Optimization of power management in an hybrid electric vehicle using dynamic programming[J]. Mathematics and Computers in Simulation, 2006(73): 244-254. 被引量:1
  • 6ANDERSSON J, AXELSSON R, JACOBSON B. Route adaptation of control strategies and driver assistant system for city buses[J]. JSAE Review, 1999(20): 531-536. 被引量:1
  • 7RAJAGOPALAN A, WASHINGTON G. Intelligent control of hybrid electric vehicles using GPS Information[R]. SAE 2002-01-1936, 2002. 被引量:1
  • 8MONTAZERI-GH M, AHMADI A, ASADI M. Driving condition recognition for genetic-fuzzy HEV control[C/ CD]//The 3rd International Workshop on Genetic and Evolving Fuzzy Systems Witten-Bommerholz, Germany, March, 2008. 被引量:1
  • 9ZHUANG Jihui, XIE Hui, YAN Ying. Research and developmem of electric vehicle data collection and calibration platform based on GPRS and intemet[C/CD]// Vehicle Power and Propulsion Conference, VPPC '08.Sept. 2008. 被引量:1
  • 10ZHU Daowei, XIE Hui. Control strategy optimization of the hybrid electric bus based on remote self-learning driving cyeles[C/CD]//Vehicle Power and Propulsion Conference, VPPC '08. Sept. 2008. 被引量:1

共引文献16

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部