期刊文献+

4×4 multiple-input multiple-output coherent microwave photonic link with optical independent sideband and optical orthogonal modulation

4×4 multiple-input multiple-output coherent microwave photonic link with optical independent sideband and optical orthogonal modulation
原文传递
导出
摘要 A 4× 4 multiple-input multiple-output coherent microwave photonic (MWP) link to transmit four wireless signals with an identical microwave center frequency over a single optical wavelength based on optical independent sideband (OISB) modulation and optical orthogonal modulation with an improved spectral efficiency is proposed and experimentally demonstrated. At the transmitter, the OISB modulation and optical orthogonal modulation are implemented to generate an OISB signal using a dual-parallel Mach-Zehnder modulator (DP- MZM) driven by four microwave orthogonal frequency-division multiplexing (OFDM) signals with an identical microwave center frequency. At the receiver, the OISB signal is coherently detected at a coherent receiver where a free-running local oscillator (LO) laser source is employed. Digital signal processing is then used to recover the four OFDM signals, to eliminate the phase noise from the transmitter laser source and the LO laser source, and to cancel the unstable wavelength difference between the wavelengths of the transmitter laser source and the LO laser source. Error-free transmission of three 16 quadrature amplitude modulation (16-QAM) 1 Gbps OFDM signals and one 16-QAM 1.5 Gbps OFDM signal at a microwave center frequency of 2.91 GHz over a 10 km single-mode fiber is experimentally demonstrated. A 4× 4 multiple-input multiple-output coherent microwave photonic (MWP) link to transmit four wireless signals with an identical microwave center frequency over a single optical wavelength based on optical independent sideband (OISB) modulation and optical orthogonal modulation with an improved spectral efficiency is proposed and experimentally demonstrated. At the transmitter, the OISB modulation and optical orthogonal modulation are implemented to generate an OISB signal using a dual-parallel Mach-Zehnder modulator (DP- MZM) driven by four microwave orthogonal frequency-division multiplexing (OFDM) signals with an identical microwave center frequency. At the receiver, the OISB signal is coherently detected at a coherent receiver where a free-running local oscillator (LO) laser source is employed. Digital signal processing is then used to recover the four OFDM signals, to eliminate the phase noise from the transmitter laser source and the LO laser source, and to cancel the unstable wavelength difference between the wavelengths of the transmitter laser source and the LO laser source. Error-free transmission of three 16 quadrature amplitude modulation (16-QAM) 1 Gbps OFDM signals and one 16-QAM 1.5 Gbps OFDM signal at a microwave center frequency of 2.91 GHz over a 10 km single-mode fiber is experimentally demonstrated.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2017年第1期33-39,共7页 中国光学快报(英文版)
基金 supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)
关键词 Fiber optics and optical communications Radio frequency photonics HETERODYNE Fiber optics and optical communications Radio frequency photonics Heterodyne
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部