摘要
The severe internal heat generation of the motorized spindle system causes uneven temperature dis- tribution, and will affect the vibration characteristics of the system. Based on the thermal analysis about the motorized spindle by finite element method (FEM), the thermal deformations of the spindle system are calculated by the thermal structure coupling simulation, and the thermal deformations of the rotor and the bearing units are extracted to analyze the bearing stiffness changes so that the modal characteristics of the rotor can be simulated in different thermal state conditions. And then the rotor thermal deformation experiment and the modal experiment of spindle by exciting with hammer are performed. The result shows that the thermal state of the motorized spindle system has a significant influence on the natural frequency of the rotor, which can be carefully treated when a spindle system is designed.
The severe internal heat generation of the motorized spindle system causes uneven temperature dis- tribution, and will affect the vibration characteristics of the system. Based on the thermal analysis about the motorized spindle by finite element method (FEM), the thermal deformations of the spindle system are calculated by the thermal structure coupling simulation, and the thermal deformations of the rotor and the bearing units are extracted to analyze the bearing stiffness changes so that the modal characteristics of the rotor can be simulated in different thermal state conditions. And then the rotor thermal deformation experiment and the modal experiment of spindle by exciting with hammer are performed. The result shows that the thermal state of the motorized spindle system has a significant influence on the natural frequency of the rotor, which can be carefully treated when a spindle system is designed.