摘要
设X和Y是维数大于1的复Banach空间,A和B分别是B(X)和B(Y)中包含有限秩算子的范数闭子代数.A,B∈A,定义A。B=A+B-AB,称。为A,B的拟积.刻画了从A到B的双边保持算子的(左,右)拟可逆性或(左,右,半)拟零因子的可加满射的结构.
Let X, Y be complex Banach spaces with dimentions greater than 1. Let A,B be normed closed subalgebras of B(X), B(Y) containing finite rank operators, respectively. For any A, B ∈A, we define the quasi-product of A and B as A o B =A + B - AB. In this paper, A characterization of additive mappings from A onto B which preserve any one of (left, right) quasi-invertibility and (left, right, semi) quasizero divisors in both directions is given.
出处
《数学学报(中文版)》
CSCD
北大核心
2017年第2期217-230,共14页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11371233)
中央高校基本科研业务费专项资金(GK201301007)
关键词
算子代数
拟可逆性
拟零因子
同构
operator algebras
quasi-invertibility
quasi-zero divisors
isomorphisms